People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Truckenmüller, Roman
Maastricht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Direct deep UV lithography to micropattern PMMA for stem cell culturecitations
- 2023Polymer film-based microwell array platform for long-term culture and research of human bronchial organoidscitations
- 2023Polymer film-based microwell array platform for long-term culture and research of human bronchial organoidscitations
- 2022Assessment of Cell-Material Interactions in Three Dimensions through Dispersed Coaggregation of Microsized Biomaterials into Tissue Spheroidscitations
- 2021Biodegradable Elastic Sponge from Nanofibrous Biphasic Calcium Phosphate Ceramic as an Advanced Material for Regenerative Medicinecitations
- 2021Thin fluorinated polymer film microcavity arrays for 3D cell culture and label-free automated feature extractioncitations
- 2020Intestinal Organoid Culture in Polymer Film-Based Microwell Arrayscitations
- 2019A Microcavity Array-Based 3D Model System of the Hematopoietic Stem Cell Nichecitations
- 20163D high throughput screening and profiling of embryoid bodies in thermoformed microwell platescitations
- 2016Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCscitations
- 2014Biofunctional Micropatterning of Thermoformed 3D Substratescitations
- 2012Fabrication of cell container arrays with overlaid surface topographiescitations
- 2012Fabrication of cell container arrays with overlaid surface topographiescitations
- 2011Thermoforming of film-based biomedical microdevicescitations
Places of action
Organizations | Location | People |
---|
article
Direct deep UV lithography to micropattern PMMA for stem cell culture
Abstract
Microengineering is increasingly being used for controlling the microenvironment of stem cells. Here, a novel method for fabricating structures with subcellular dimensions in commonly available thermoplastic poly(methyl methacrylate) (PMMA) is shown. Microstructures are produced in PMMA substrates using Deep Ultraviolet lithography, and the effect of different developers is described. Microgrooves fabricated in PMMA are used for the neuronal differentiation of mouse embryonic stem cells (mESCs) directly on the polymer. The fabrication of 3D, curvilinear patterned surfaces is also highlighted. A 3D multilayered microfluidic chip is fabricated using this method, which includes a porous polycarbonate (PC) membrane as cell culture substrate. Besides directly manufacturing PMMA-based microfluidic devices, an application of the novel approach is shown where a reusable PMMA master is created for replicating microstructures with polydimethylsiloxane (PDMS). As an application example, microchannels fabricated in PDMS are used to selectively expose mESCs to soluble factors in a localized manner. The described microfabrication process offers a remarkably simple method to fabricate for example multifunctional topographical or microfluidic culture substrates outside cleanrooms, thereby using inexpensive and widely accessible equipment. The versatility of the underlying process could find various applications also in optical systems and surface modification of biomedical implants.