People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Truckenmüller, Roman
Maastricht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Direct deep UV lithography to micropattern PMMA for stem cell culturecitations
- 2023Polymer film-based microwell array platform for long-term culture and research of human bronchial organoidscitations
- 2023Polymer film-based microwell array platform for long-term culture and research of human bronchial organoidscitations
- 2022Assessment of Cell-Material Interactions in Three Dimensions through Dispersed Coaggregation of Microsized Biomaterials into Tissue Spheroidscitations
- 2021Biodegradable Elastic Sponge from Nanofibrous Biphasic Calcium Phosphate Ceramic as an Advanced Material for Regenerative Medicinecitations
- 2021Thin fluorinated polymer film microcavity arrays for 3D cell culture and label-free automated feature extractioncitations
- 2020Intestinal Organoid Culture in Polymer Film-Based Microwell Arrayscitations
- 2019A Microcavity Array-Based 3D Model System of the Hematopoietic Stem Cell Nichecitations
- 20163D high throughput screening and profiling of embryoid bodies in thermoformed microwell platescitations
- 2016Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCscitations
- 2014Biofunctional Micropatterning of Thermoformed 3D Substratescitations
- 2012Fabrication of cell container arrays with overlaid surface topographiescitations
- 2012Fabrication of cell container arrays with overlaid surface topographiescitations
- 2011Thermoforming of film-based biomedical microdevicescitations
Places of action
Organizations | Location | People |
---|
article
Polymer film-based microwell array platform for long-term culture and research of human bronchial organoids
Abstract
The culture of lung organoids relies on drops of basement membrane matrices. This comes with limitations, for example, concerning the microscopic monitoring and imaging of the organoids in the drops. Also, the culture technique is not easily compatible with micromanipulations of the organoids. In this study, we investigated the feasibility of the culture of human bronchial organoids in defined x-, y-and z-positions in a polymer film-based microwell array platform. The circular microwells have thin round/U-bottoms. For this, single cells are first precultured in drops of basement membrane extract (BME). After they form cell clusters or premature organoids, the preformed structures are then transferred into the microwells in a solution of 50% BME in medium. There, the structures can be cultured toward differentiated and mature organoids for several weeks. The organoids were characterized by bright-field microscopy for size growth and luminal fusion over time, by scanning electron microscopy for overall morphology, by transmission electron microscopy for the existence of microvilli and cilia, by video microscopy for beating cilia and swirling fluid, by live-cell imaging, by fluorescence microscopy for the expression of cell-specific markers and for proliferating and apoptotic cells, and by ATP measurement for extended cell viability. Finally, we demonstrated the eased micromanipulation of the organoids in the microwells by the example of their microinjection.