People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rimondini, Lia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutmentcitations
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutment
- 2024Multifunctional Sr,Mg doped mesoporous bioactive glass nanoparticles
- 2023Conferring Antioxidant Activity to an Antibacterial and Bioactive Titanium Surface through the Grafting of a Natural Extractcitations
- 2023Ti$_{40}$Zr$_{10}$Cu$_{36}$Pd$_{14}$ bulk metallic glass as oral implant materialcitations
- 2023Functionalization of a chemically treated Ti6Al4V-ELI alloy with nisin for antibacterial purposescitations
- 2023Ti40Zr10Cu36Pd14 bulk metallic glass as oral implant materialcitations
- 2022Antibacterial activity, cytocompatibility, and thermomechanical stability of Ti40Zr10Cu36Pd14 bulk metallic glasscitations
- 2021Antibacterial, pro-angiogenic and pro-osteointegrative zein-bioactive glass/copper based coatings for implantable stainless steel aimed at bone healingcitations
- 2020Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Reviewcitations
- 2018Reduced bacterial adhesion on ceramics used for arthroplasty applicationscitations
- 2017Composite bone cements for hyperthermia: modeling and characterization of magnetic, calorimetric and in vitro heating propertiescitations
- 2015Bioceramic Materials Show Reduced Pathological Biofilm Formationcitations
- 2015Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibilitycitations
- 2014Antibacterial and bioactive nanostructured titanium surfaces for bone integrationcitations
- 2012Surface Tailoring of Inorganic Materials for Biomedical Applicationscitations
- 2010Bioactive titanium surfaces
- 2006In vitro corrosion study by EIS of an equiatomic NiTi alloy and an implant quality AISI 316 stainless steelcitations
- 2002In vitro corrosion characterization and cell proliferation on surface-modified Ticitations
Places of action
Organizations | Location | People |
---|
article
Antibacterial activity, cytocompatibility, and thermomechanical stability of Ti40Zr10Cu36Pd14 bulk metallic glass
Abstract
This paper envisions Ti40Zr10Cu36Pd14 bulk metallic glass as an oral implant material and evaluates its antibacterial performance in the inhabitation of oral biofilm formation in comparison with the gold standard Ti-6Al-4V implant material. Metallic glasses are superior in terms of biocorrosion and have a reduced stress shielding effect compared with their crystalline counterparts. Dynamic mechanical and thermal expansion analyses on Ti40Zr10Cu36Pd14 show that these materials can be thermomechanically shaped into implants. Static water contact angle measurement on samples' surface shows an increased surface wettability on the Ti-6Al-4V surface after 48 h incubation in the water while the contact angle remains constant for Ti40Zr10Cu36Pd14 . Further, high-resolution transmission and scanning transmission electron microscopy analysis have revealed that Ti40Zr10Cu36Pd14 interior is fully amorphous, while a 15 nm surface oxide is formed on its surface and assigned as copper oxide. Unlike titanium oxide formed on Ti-6Al-4V, copper oxide is hydrophobic, and its formation reduces surface wettability. Further surface analysis by X-ray photoelectron spectroscopy confirmed the presence of copper oxide on the surface. Metallic glasses cytocompatibility was first demonstrated towards human gingival fibroblasts, and then the antibacterial properties were verified towards the oral pathogen Aggregatibacter actinomycetemcomitans responsible for oral biofilm formation. After 24 h of direct infection, metallic glasses reported a >70% reduction of bacteria viability and the number of viable colonies was reduced by similar to 8 times, as shown by the colony-forming unit count. Field emission scanning electron microscopy and fluorescent images confirmed the lower surface colonization of metallic glasses in comparison with controls. Finally, oral biofilm obtained from healthy volunteers was cultivated onto specimens' surface, and proteomics was applied to study the surface property impact on species composition within the oral ...