People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sarac, Baran
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (46/46 displayed)
- 2024Thermomechanical properties of confined magnetic nanoparticles in electrospun polyacrylonitrile nanofiber matrix exposed to a magnetic environment: structure, morphology, and stabilization (cyclization)citations
- 2024Peculiarity of hydrogen absorption in duplex steels: Phase-selective lattice swelling and stress evolutioncitations
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutmentcitations
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutment
- 2023Iron oxide – poly(m-anthranilic acid)–poly(ε-caprolactone) electrospun composite nanofibers: fabrication and propertiescitations
- 2023Synergistic enhancement of hydrogen interactions in palladium–silicon–gold metallic glass with multilayered graphenecitations
- 2023Synergistic enhancement of hydrogen interactions in palladium-gold-silicon metallic glass on multilayered graphenecitations
- 2023Hierarchical Surface Pattern on Ni-Free Ti-Based Bulk Metallic Glass to Control Cell Interactions.
- 2023Ti$_{40}$Zr$_{10}$Cu$_{36}$Pd$_{14}$ bulk metallic glass as oral implant materialcitations
- 2023Toxic element-free Ti-based metallic glass ribbons with precious metal additionscitations
- 2023Precious and Transition Metal Based Metallic Glass and Electrospun Functionalized Polymers for Low-Temperature Proton Exchange Membranes
- 2023Pd-based Metallic Glasses as Promising Materials for Hydrogen Energy Applicationscitations
- 2023Styrene–butadiene–styrene-based stretchable electrospun nanofibers by carbon nanotube inclusioncitations
- 2023Hierarchical Surface Pattern on Ni‐Free Ti‐Based Bulk Metallic Glass to Control Cell Interactionscitations
- 2023Ti40Zr10Cu36Pd14 bulk metallic glass as oral implant materialcitations
- 2022Structure-dynamics relationships in cryogenically deformed bulk metallic glasscitations
- 2022Antibacterial activity, cytocompatibility, and thermomechanical stability of Ti40Zr10Cu36Pd14 bulk metallic glasscitations
- 2022New-generation biocompatible Ti-based metallic glass ribbons for flexible implantscitations
- 2022Effect of supporting electrolyte on capacitance and morphology of electrodeposited poly(3,4-propylenedioxythiophene) derivatives bearing reactive functional groupscitations
- 2022Magnetron Sputtered Non‐Toxic and Precious Element‐Free TiZrGe Metallic Glass Nanofilms with Enhanced Biocorrosion Resistancecitations
- 2022Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas-solid reactions.
- 2022Surmounting the thermal processing limitscitations
- 2022Carbon nanotube‐polybutadiene‐poly(ethylene oxide)‐based composite fibers: Role of cryogenic treatment on intrinsic propertiescitations
- 2021Thermomechanical and structural characterization of polybutadiene/poly(ethylene oxide)/CNT stretchable electrospun fibrous membranescitations
- 2021Functionalized highly electron-rich redox-active electropolymerized 3,4-propylenedioxythiophenes as precursors and targets for bioelectronics and supercapacitorscitations
- 2021Effect of high pressure torsion on crystallization and magnetic properties of Fe$_{73.9}$Cu$_{1}$Nb$_{3}$Si$_{15.5}$B$_{6.6}$citations
- 2021Effective Methanol Oxidation with Platinum Nanoparticles-Decorated Poly(2-bromomethyl-2-methyl-3,4-propylenedioxythiophene)-Coated Glassy Carbon Electrodecitations
- 2021Transition metal-based high entropy alloy microfiber electrodescitations
- 2021Deformation-Mode-Sensitive Behavior of CuZr-Based Bulk Metallic Glasses Under Dynamic Loadingcitations
- 2021Enhancement of interfacial hydrogen interactions with nanoporous gold-containing metallic glasscitations
- 2021Electrospun polyacrylonitrile/2-(acryloyloxy)ethyl ferrocenecarboxylate polymer blend nanofiberscitations
- 2021Effect of high pressure torsion on crystallization and magnetic properties of Fe73.9Cu1Nb3Si15.5B6.6citations
- 2021Transition metal-based high entropy alloy microfiber electrodes: Corrosion behavior and hydrogen activitycitations
- 2020Effective electrocatalytic methanol oxidation of Pd-based metallic glass nanofilmscitations
- 2020Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas-solid reactions.
- 2020Cover Feature: Metallic Glass Films with Nanostructured Periodic Density Fluctuations Supported on Si/SiO2 as an Efficient Hydrogen Sorber (Chem. Eur. J. 37/2020)
- 2020Metallic glass films with nanostructured periodic density fluctuations supported on Si/SiO 2 as an efficient hydrogen sorbercitations
- 2020Metallic Glass Films with Nanostructured Periodic Density Fluctuations Supported on Si/SiO2 as an Efficient Hydrogen Sorber.
- 2019Ultrahigh hydrogen-sorbing palladium metallic-glass nanostructurescitations
- 2018Activation volume and energy of bulk metallic glasses determined by nanoindentationcitations
- 2017Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shapingcitations
- 2017Atomic origin for rejuvenation of a Zr-based metallic glass at cryogenic temperaturecitations
- 2017Micro-patterning by thermoplastic forming of Ni-free Ti-based bulk metallic glassescitations
- 2016Towards the better: Intrinsic property amelioration in bulk metallic glassescitations
- 2016Structure-property relationships in nanoporous metallic glassescitations
- 2014Property optimization of porous metallic glasses via structural designcitations
Places of action
Organizations | Location | People |
---|
article
Antibacterial activity, cytocompatibility, and thermomechanical stability of Ti40Zr10Cu36Pd14 bulk metallic glass
Abstract
This paper envisions Ti40Zr10Cu36Pd14 bulk metallic glass as an oral implant material and evaluates its antibacterial performance in the inhabitation of oral biofilm formation in comparison with the gold standard Ti-6Al-4V implant material. Metallic glasses are superior in terms of biocorrosion and have a reduced stress shielding effect compared with their crystalline counterparts. Dynamic mechanical and thermal expansion analyses on Ti40Zr10Cu36Pd14 show that these materials can be thermomechanically shaped into implants. Static water contact angle measurement on samples' surface shows an increased surface wettability on the Ti-6Al-4V surface after 48 h incubation in the water while the contact angle remains constant for Ti40Zr10Cu36Pd14 . Further, high-resolution transmission and scanning transmission electron microscopy analysis have revealed that Ti40Zr10Cu36Pd14 interior is fully amorphous, while a 15 nm surface oxide is formed on its surface and assigned as copper oxide. Unlike titanium oxide formed on Ti-6Al-4V, copper oxide is hydrophobic, and its formation reduces surface wettability. Further surface analysis by X-ray photoelectron spectroscopy confirmed the presence of copper oxide on the surface. Metallic glasses cytocompatibility was first demonstrated towards human gingival fibroblasts, and then the antibacterial properties were verified towards the oral pathogen Aggregatibacter actinomycetemcomitans responsible for oral biofilm formation. After 24 h of direct infection, metallic glasses reported a >70% reduction of bacteria viability and the number of viable colonies was reduced by similar to 8 times, as shown by the colony-forming unit count. Field emission scanning electron microscopy and fluorescent images confirmed the lower surface colonization of metallic glasses in comparison with controls. Finally, oral biofilm obtained from healthy volunteers was cultivated onto specimens' surface, and proteomics was applied to study the surface property impact on species composition within the oral ...