Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Scheiger, J. M.

  • Google
  • 2
  • 15
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds25citations
  • 2021Droplet microarrays for cell culture: effect of surface properties and nanoliter culture volume on global transcriptomic landscape13citations

Places of action

Chart of shared publication
Hoffmann, M.
1 / 28 shared
Falkenstein, P.
1 / 1 shared
Rutschmann, M.
1 / 1 shared
Scheiger, V. W.
1 / 1 shared
Urbschat, K.
1 / 1 shared
Sengpiel, T.
1 / 1 shared
Matysik, J.
1 / 1 shared
Levkin, Pavel A.
2 / 5 shared
Grimm, A.
1 / 3 shared
Wilhelm, M.
1 / 11 shared
Théato, Patrick
1 / 12 shared
Benz, M.
1 / 2 shared
Chakraborty, S.
1 / 13 shared
Gourain, V.
1 / 1 shared
Popova, A. A.
1 / 1 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Hoffmann, M.
  • Falkenstein, P.
  • Rutschmann, M.
  • Scheiger, V. W.
  • Urbschat, K.
  • Sengpiel, T.
  • Matysik, J.
  • Levkin, Pavel A.
  • Grimm, A.
  • Wilhelm, M.
  • Théato, Patrick
  • Benz, M.
  • Chakraborty, S.
  • Gourain, V.
  • Popova, A. A.
OrganizationsLocationPeople

article

Droplet microarrays for cell culture: effect of surface properties and nanoliter culture volume on global transcriptomic landscape

  • Benz, M.
  • Chakraborty, S.
  • Gourain, V.
  • Scheiger, J. M.
  • Levkin, Pavel A.
  • Popova, A. A.
Abstract

The development of novel chemically developed and physically defined surfaces and environments for cell culture and screening is important for various biological applications. The Droplet microarray (DMA) platform based on hydrophilic-superhydrophobic patterning enables high-throughput cellular screening in nanoliter volumes and on various biocompatible surfaces. Here we performed phenotypic and transcriptomic analysis of HeLa-CCL2 cells cultured on DMA, with a goal to analyze cellular response on different surfaces and culture volumes down to 3 nL, compared with conventional cell culture platforms. Our results indicate that cells cultured on four tested substrates: nanostructured nonpolymer, rough and smooth variants of poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) polymer and poly(thioether) dendrimer are compatible with cells grown in Petri dish. Cells cultured on nanostructured nonpolymer coating exhibited the closet transcriptomic resemblance to that of cells grown in Petri dish. Analysis of cells cultured in 100, 9, and 3 nL media droplets on DMA indicated that all but cells grown in 3 nL volumes had unperturbed viability with minimal alterations in the transcriptome compared with 96-well plate. Our findings demonstrate the applicability of DMA for cell-based assays and highlight the possibility of establishing regular cell culture on various biomaterial-coated substrates and in nanoliter volumes, along with routinely used cell culture platforms.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • dendrimer