People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Czibula, Caterina
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Functionalizing Surfaces by Physical Vapor Deposition To Measure the Degree of Nanoscale Contact Using FRET
- 2022The effect of the strain rate on the longitudinal modulus of cellulosic fibrescitations
- 2022Nanoindentation for Fast Investigation of PET Film Degradationcitations
- 2022Surmounting the thermal processing limitscitations
- 2021A compressible plasticity model for pulp fibers under transverse loadcitations
- 2021Morphological characterization of semi-crystalline POM using nanoindentationcitations
- 2021Comprehensive investigation of the viscoelastic properties of PMMA by nanoindentationcitations
- 2019Design of Friction, Morphology, Wetting, and Protein Affinity by Cellulose Blend Thin Film Compositioncitations
- 2016Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films.citations
Places of action
Organizations | Location | People |
---|
article
Surmounting the thermal processing limits
Abstract
<p>Ni-free Ti-based bulk metallic glasses (BMGs) are promising for biomedical applications, thanks to their excellent biocompatibility and high corrosion resistance. BMGs can be shaped and patterned by viscous flow deformation using thermoplastic net-shaping. This work presents a novel strategy for thermoplastic net-shaping of Ti<sub>40</sub>Zr<sub>10</sub>Cu<sub>34</sub>Pd<sub>14</sub>Sn<sub>2</sub> BMG. Instead of operating for a short time slightly above the glass transition temperature to avoid crystallization, the proposed method accepts the formation of nanocrystals and makes use of the lower viscosity of the supercooled liquid when processing above the glass transition temperature. Following this approach, Ti<sub>40</sub>Zr<sub>10</sub>Cu<sub>34</sub>Pd<sub>14</sub>Sn<sub>2</sub> BMG is deformed from a rod to a thin disk, and patterns scaling from 5 μm to 300 μm are successfully created on the Ti-BMG surfaces, demonstrating the potential to create complex features for functional materials. Furthermore, after the thermoplastic net-shaping treatment, the Vickers hardness increases by 6% while the corrosion and passivation current density decrease by an order of magnitude. This work reveals that the BMGs can still be deformed and patterned via the thermoplastic net-shaping technique if the first crystallization event of the BMG systems is the formation of nanocrystals. Most importantly, this work reveals the possibility of processing a broad family of mediocre glass-forming systems and semi-crystalline composites via thermoplastic net-shaping.</p>