Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salah, Mohammed

  • Google
  • 1
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Multi-functional wet-electrospun piezoelectric nanofibers sensing mat7citations

Places of action

Chart of shared publication
Nair, Remya
1 / 3 shared
Gamal, Mohammed
1 / 4 shared
Hassanin, Ahmed H.
1 / 8 shared
Popelka, Anton
1 / 5 shared
Omran, Nada
1 / 6 shared
Shehata, Nader
1 / 6 shared
Elnabawy, Eman
1 / 2 shared
Kandas, Ishac
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Nair, Remya
  • Gamal, Mohammed
  • Hassanin, Ahmed H.
  • Popelka, Anton
  • Omran, Nada
  • Shehata, Nader
  • Elnabawy, Eman
  • Kandas, Ishac
OrganizationsLocationPeople

article

Multi-functional wet-electrospun piezoelectric nanofibers sensing mat

  • Nair, Remya
  • Gamal, Mohammed
  • Hassanin, Ahmed H.
  • Popelka, Anton
  • Omran, Nada
  • Shehata, Nader
  • Elnabawy, Eman
  • Kandas, Ishac
  • Salah, Mohammed
Abstract

<p>This paper introduces the fabrication of multi-featured nanofibers membranes using wet-electrospinning process. Polyvinylidene fluoride (PVDF) nanofibers were wet-electrospun onto poly (3, 4-ethylenedioxythiophene) poly (styrene sulfonate) (PEDOT: PSS) coagulation bath to generate hybrid structure of piezoelectric multifunctional sensor. Therefore, the fabricated wet-electrospun nanofibers membrane shows piezo sensitivity up to 0.9 V/N and piezo coefficient (d<sub>33</sub>) of 27.2 pC/N. In addition, our fabricated membrane shows a variable surface roughness response up to 120 p.m. at an applied DC voltage of 10 V, as an opposite piezoelectric transducing mechanism. Also, our formed nanocomposite showed a strain sensing capability with conductivity variation of 0.01833 S/m per each 1% elongation strain. Furthermore, we have detected the effect of cyclic stretching strains over 100 times on the performance of both piezo response and strain sensing of our developed wetspun nanofibers. The presented work has a high potential to be applied in different applications related to wearable and flexible electronics as well as industrial mechanical transducers.</p>

Topics
  • nanocomposite
  • surface
  • electrospinning