People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tiginyanu, Ion
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Synthesis and Nanostructure Investigation of Hybrid β-Ga2 O3 /ZnGa2 O4 Nanocomposite Networks with Narrow-Band Green Luminescence and High Initial Electrochemical Capacitycitations
- 2020Aero-Ga(2)O(3)Nanomaterial Electromagnetically Transparent from Microwaves to Terahertz for Internet of Things Applicationscitations
- 2019Individual CdS-covered aerographite microtubes for room temperature VOC sensing with high selectivitycitations
- 2018Hierarchical aerographite 3D flexible networks hybridized by InP micro/nanostructures for strain sensor applicationscitations
- 2018Hierarchical aerographite 3D flexible networks hybridized by InP micro/nanostructures for strain sensor applicationscitations
- 2018Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin filmcitations
- 2018Zinc oxide nanotetrapods with four different arm morphologies for versatile nanosensorscitations
- 2018ZnAl2O4-Functionalized Zinc Oxide Microstructures for Highly Selective Hydrogen Gas Sensing Applicationscitations
- 2016Nanostructures and Thin Films for Multifunctional Applications Technology, Properties and Devicescitations
- 2016Multifunctional device based on ZnOcitations
- 2016Silver-doped zinc oxide single nanowire multifunctional nanosensor with a significant enhancement in responsecitations
- 2015Integration of individual TiO2 nanotube on the chip: Nanodevice for hydrogen sensingcitations
- 2015Integration of individual TiO2 nanotube on the chipcitations
- 2015Three-dimensional Aerographite-GaN hybrid networkscitations
- 2015Three-dimensional Aerographite-GaN hybrid networks: single step fabrication of porous and mechanically flexible materials for multifunctional applications
- 2014Versatile growth of freestanding orthorhombic α-molybdenum trioxide nano- and microstructures by rapid thermal processing for gas nanosensorscitations
Places of action
Organizations | Location | People |
---|
article
Individual CdS-covered aerographite microtubes for room temperature VOC sensing with high selectivity
Abstract
The synthesis of new nanomaterials with a large surface-to-volume ratio is of high interest for sensing applications, and especially for gas sensors with high performances. In this work, a thin layer of CdS is deposited onto tubular graphitic/aerographite microstructures using RF magnetron sputtering for further integration into sensing devices using a FIB/SEM system. The quality of the deposited layers as well as microstructural features were analyzed by transmission electron microscopy and energy dispersive X-ray spectroscopy. The gas sensing measurements at room temperature demonstrated the excellent sensing properties towards vapors of volatile organic compounds (VOCs), such as ethanol, acetone, 2-propanol and n- butanol. The superior properties were attributed to the nanometer thickness (20–30 nm)and high surface-to-volume ratio of CdS thin layers as a result of the tubular structure of wrinkled Aerographite (AG). This causes a big number of gas sensitive potential barriers between particles, resulting in a high sensor response. This makes mesoporous graphitic/aerographite microtubes ideal construction blocks for the formation of hybrid materials and for their use in gas sensing applications. The presented strategy can be also applied to other materials with high performance gas sensing properties.