Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sgarbossa, Francesco

  • Google
  • 7
  • 44
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024New method for the deposition of thin films on the inner walls of a deep blind hole: Application to semiconductor dopingcitations
  • 2023Synthesis of relaxed Ge0.9Sn0.1/Ge by nanosecond pulsed laser melting8citations
  • 2023Pulsed laser annealed Ga hyperdoped poly‐Si/SiOx passivating contacts for high‐efficiency monocrystalline Si solar cells5citations
  • 2023Synthesis of Large-Area Crystalline MoS2 by Sputter Deposition and Pulsed Laser Annealing3citations
  • 2022The GALORE project1citations
  • 2018Pulsed laser diffusion of thin hole-barrier contacts in high purity germanium for gamma radiation detectors12citations
  • 2018Diffusion doping of germanium by sputtered antimony sources8citations

Places of action

Chart of shared publication
Napolitani, Enrico
4 / 11 shared
Carraro, Chiara
1 / 3 shared
Maggioni, Gianluigi
2 / 8 shared
Bertoldo, Stefano
1 / 1 shared
De Salvador, Davide
3 / 6 shared
Raniero, Walter
1 / 5 shared
Ndiaye, Samba
1 / 3 shared
Vurpillot, Francois
1 / 2 shared
Rouviere, Jean-Luc
1 / 5 shared
Di Russo, Enrico
2 / 5 shared
Ranieri, Pierpaolo
1 / 1 shared
Rigutti, Lorenzo
1 / 10 shared
Duguay, Sebastien
1 / 2 shared
Morandi, Vittorio
1 / 17 shared
Jiang, Chunsheng
1 / 1 shared
Guthrey, Harvey
1 / 5 shared
Stradins, Paul
1 / 6 shared
Page, Matthew
1 / 3 shared
Theingi, San
1 / 3 shared
Chen, Kejun
1 / 1 shared
Agarwal, Sumit
1 / 9 shared
Young, David L.
1 / 5 shared
De Tullio, Matteo
1 / 1 shared
Nemeth, William
1 / 6 shared
Sheehan, Brendan
1 / 4 shared
Coleman, Emma
1 / 4 shared
Mischianti, Arianna
1 / 1 shared
Gity, Farzan
1 / 15 shared
Duffy, Ray
1 / 9 shared
Lebedev, Vasily A.
1 / 1 shared
Panarella, Luca
1 / 1 shared
Tonon, Alessandro
1 / 1 shared
Raniero, W.
2 / 3 shared
Riccetto, S.
1 / 1 shared
Boldrini, V.
2 / 2 shared
De Salvador, D.
2 / 6 shared
Carturan, S.
2 / 10 shared
Napolitani, E.
2 / 7 shared
Napoli, D. R.
1 / 3 shared
Milazzo, R.
1 / 2 shared
Andrighetto, A.
1 / 3 shared
Scarpa, D.
1 / 3 shared
Maggioni, G.
2 / 14 shared
Napoli, D.
1 / 1 shared
Chart of publication period
2024
2023
2022
2018

Co-Authors (by relevance)

  • Napolitani, Enrico
  • Carraro, Chiara
  • Maggioni, Gianluigi
  • Bertoldo, Stefano
  • De Salvador, Davide
  • Raniero, Walter
  • Ndiaye, Samba
  • Vurpillot, Francois
  • Rouviere, Jean-Luc
  • Di Russo, Enrico
  • Ranieri, Pierpaolo
  • Rigutti, Lorenzo
  • Duguay, Sebastien
  • Morandi, Vittorio
  • Jiang, Chunsheng
  • Guthrey, Harvey
  • Stradins, Paul
  • Page, Matthew
  • Theingi, San
  • Chen, Kejun
  • Agarwal, Sumit
  • Young, David L.
  • De Tullio, Matteo
  • Nemeth, William
  • Sheehan, Brendan
  • Coleman, Emma
  • Mischianti, Arianna
  • Gity, Farzan
  • Duffy, Ray
  • Lebedev, Vasily A.
  • Panarella, Luca
  • Tonon, Alessandro
  • Raniero, W.
  • Riccetto, S.
  • Boldrini, V.
  • De Salvador, D.
  • Carturan, S.
  • Napolitani, E.
  • Napoli, D. R.
  • Milazzo, R.
  • Andrighetto, A.
  • Scarpa, D.
  • Maggioni, G.
  • Napoli, D.
OrganizationsLocationPeople

article

Diffusion doping of germanium by sputtered antimony sources

  • Raniero, W.
  • Napoli, D.
  • Boldrini, V.
  • De Salvador, D.
  • Carturan, S.
  • Napolitani, E.
  • Sgarbossa, Francesco
  • Maggioni, G.
Abstract

Antimony sputter deposition and subsequent diffusion annealing in controlled atmosphere was implemented on Ge wafers, for achieving an optimized n+ doping aimed at the final application of these doped contacts to Ge-based radiation detectors. Two approaches were adopted for n+ doping: diffusion from Sb source sputtered directly on the Ge surface, and diffusion from a remote dopant source. Surface morphology was specifically investigated by electron (SEM-EDS) and atomic (AFM) microscopies. Diffusion profiles were characterized by Secondary Ion Mass Spectrometry (SIMS). The remote doping, obtained by using a Sb-coated Si wafer placed close to the Ge substrate during the diffusion annealing, allowed to attain defect-free surface morphologies and diffusion profiles compatible with well assessed equilibrium diffusion models. © 2017 Elsevier Ltd

Topics
  • Deposition
  • morphology
  • surface
  • scanning electron microscopy
  • atomic force microscopy
  • defect
  • annealing
  • Energy-dispersive X-ray spectroscopy
  • spectrometry
  • selective ion monitoring
  • secondary ion mass spectrometry
  • Germanium
  • Antimony