People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Montalenti, Francesco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Polytypic quantum wells in Si and Ge: impact of 2D hexagonal inclusions on electronic band structurecitations
- 2024Extreme time extrapolation capabilities and thermodynamic consistency of physics-inspired Neural Networks for the 3D microstructure evolution of materials
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2022Stress-Induced Acceleration and Ordering in Solid-State Dewettingcitations
- 2020Self-assembly of nanovoids in Si microcrystals epitaxially grown on deeply patterned substratescitations
- 2020Molecular dynamics simulations of extended defects and their evolution in 3C-SiC by different potentialscitations
- 2019Structure and Stability of Partial Dislocation Complexes in 3C-SiC by Molecular Dynamics Simulationscitations
- 2017Strain Engineering in Highly Mismatched SiGe/Si Heterostructurescitations
- 2017Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended filmcitations
- 2017Strain engineering in highly mismatched SiGe/Si heterostructurescitations
- 2016Temperature-controlled coalescence during the growth of Ge crystals on deeply patterned Si substratescitations
- 2016Elastic and Plastic Stress Relaxation in Highly Mismatched SiGe/Si Crystalscitations
- 2016Elastic and plastic stress relaxation in highly mismatched SiGe/Si crystalscitations
- 2016From plastic to elastic stress relaxation in highly mismatched SiGe/Si heterostructurescitations
- 2016From plastic to elastic stress relaxation in highly mismatched SiGe/Si heterostructurescitations
- 2015Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Sicitations
- 2015Local uniaxial tensile strain in germanium of up to 4% induced by SiGe epitaxial nanostructurescitations
- 2014Straining Ge bulk and nanomembranes for optoelectronic applications: a systematic numerical analysiscitations
Places of action
Organizations | Location | People |
---|
article
Strain Engineering in Highly Mismatched SiGe/Si Heterostructures
Abstract
<p>In this work we present an innovative approach to realise coherent, highly-mismatched 3-dimensional heterostructures on substrates patterned at the micrometre-scale. The approach is based on the out-of-equilibrium deposition of SiGe alloys graded at an exceptionally shallow grading rate (GR) of 1.5% mu m(-1) by low energy plasma enhanced chemical vapour deposition (LEPECVD). Fully coherent SiGe/Si crystals up to 6 mu m in width were achieved as confirmed by defect etching and transmission electron microscopy (TEM) analyses. The experimental results are supported by calculations of the energy for dislocation formation which indicate that elastic relaxation is energetically favoured over plastic relaxation in the narrower heterostructures. X-ray diffraction measurements show that the SiGe crystals are strain-free irrespective of the stress relieving mechanism which changes from elastic to plastic by increasing their width. The impact of dislocations on the SiGe crystal quality is analysed by comparing the width of X-ray diffraction peaks as a function of the heterostructure size. (C) 2016 Elsevier Ltd. All rights reserved.</p>