People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ehlig, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2015The bennett linkage as a hinge application
- 2014Development of an adaptive composite leaf spring
- 2013Optimization of a Test Bench for Testing Compliant Elements Under Shear-Force-Free Bending Loadcitations
- 2013Development and Investigation of a Textile-reinforced Thermoplastic Leaf Spring with Integrated Sensor Networkscitations
Places of action
Organizations | Location | People |
---|
article
Optimization of a Test Bench for Testing Compliant Elements Under Shear-Force-Free Bending Load
Abstract
As a contribution to the efficient cyclic testing of textile-reinforced compliant structures, a kinematic test rig for the static and dynamic bending test of composite stripe specimens has been developed [1]. This multifunctional six-membered linkage allows a moment application free of shear force by providing a pure bending load while bending the specimen in one direction up to 90°. During cyclic testing with a frequency of 1 or 2 Hz the progressive damage behaviour meaning the initiation and propagation of fibre breaks with increasing load cycles up to complete structural failure has been monitored using industrial computer tomography [2]. The test results showed considerable differences within the results and therefore led to a need for a modified test rig to reach higher frequencies. Hence, a new concept for a shear-force-free bending test bench has been developed which allows a periodic bending in both directions from 90° up to 90°. This paper intends to make contributions to the efficient cyclic testing of textile-reinforced compliant structures by optimizing this new mechanism structure to minimize the induced shear force.