People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Volodkin, Dmitry
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Formulation and Biodegradation of Surface-Supported Biopolymer-Based Microgels Formed via Hard Templating onto Vaterite CaCO3 Crystalscitations
- 2022The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compoundscitations
- 2022The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compounds
- 2022The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compoundscitations
- 2020Temperature Window for Encapsulation of an Enzyme into Thermally Shrunk, CaCO3 Templated Polyelectrolyte Multilayer Capsules.citations
- 2020Temperature window for encapsulation of an enzyme into thermally shrunk, CaCO3 templated polyelectrolyte multilayer capsulescitations
- 2015Composite magnetite and protein containing CaCO3 crystals : external manipulation and vaterite → calcite recrystallization-mediated release performancecitations
- 2012Control of cell adhesion by mechanical reinforcement of soft polyelectrolyte films with nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compounds
Abstract
Hydrogels, which are versatile three-dimensional structures containing polymers and water, are very attractive for use in biomedical fields, but they suffer from rather weak mechanical properties. In this regard, biocompatible particles can be used to enhance their mechanical properties. The possibility of loading such particles with drugs (e.g. enzymes) makes them a particularly useful component in hydrogels. In this study, micro/nanoparticles containing various ratios of Ca /Mg with sizes ranging from 1 to 8 μm were prepared and mixed with gellan gum (GG) solution to study the in-situ formation of hydrogel-particle composites. The particles provide multiple functionalities: 1) they efficiently crosslink GG to induce hydrogel formation through the release of the divalent cations (Ca /Mg ) known to bind to GG polymer chains; 2) they enhance mechanical properties of the hydrogel from 2 up to 100 kPa; 3) the samples most efficiently promoting cell growth were found to contain two types of minerals: vaterite and hydroxymagnesite, which enhanced cells proliferation and hydroxyapatite formation. The results demonstrate that such composite materials are attractive candidates for applications in bone regeneration.