Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aksakal, S.

  • Google
  • 1
  • 8
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron14citations

Places of action

Chart of shared publication
Tigrine, A.
1 / 1 shared
Zadpoor, Amir, A.
1 / 38 shared
Mol, Arjan
1 / 64 shared
Putra, Niko Eka
1 / 8 shared
Rosa, V. R. De La
1 / 1 shared
Fratila-Apachitei, Lidy
1 / 11 shared
Zhou, Jie
1 / 31 shared
Taheri, Peyman
1 / 16 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Tigrine, A.
  • Zadpoor, Amir, A.
  • Mol, Arjan
  • Putra, Niko Eka
  • Rosa, V. R. De La
  • Fratila-Apachitei, Lidy
  • Zhou, Jie
  • Taheri, Peyman
OrganizationsLocationPeople

article

Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron

  • Tigrine, A.
  • Zadpoor, Amir, A.
  • Aksakal, S.
  • Mol, Arjan
  • Putra, Niko Eka
  • Rosa, V. R. De La
  • Fratila-Apachitei, Lidy
  • Zhou, Jie
  • Taheri, Peyman
Abstract

<p>Additively manufacturing of porous iron offers a unique opportunity to increase its biodegradation rate by taking advantage of arbitrarily complex porous structures. Nevertheless, achieving the required biodegradation profile remains challenging due to the natural passivation of iron that decrease the biodegradation rate. Moreover, the biocompatibility of iron is reported to be limited. Here, we address both challenges by applying poly(2-ethyl-2-oxazoline) coating to extrusion-based 3D printed porous iron. We characterized the specimens by performing in vitro biodegradation, electrochemical measurements, time-dependent mechanical tests, and in vitro cytocompatibility assays. The coated porous iron exhibited a biodegradation rate that was 2.6× higher than that of non-coated counterpart and maintained the bone-mimicking mechanical properties throughout biodegradation. Despite the formation of dense biodegradation products, the coating ensured a relatively stable biodegradation (i.e., 17% reduction in the degradation rate between days 14 and 28) as compared to that of non-coated specimens (i.e., 43% drop). Furthermore, the coating could be identified even after biodegradation, demonstrating the longevity of the coating. Finally, the coated specimens significantly increased the viability and supported the attachment and growth of preosteoblasts. Our results demonstrate the great potential of poly(2-ethyl-2-oxazoline) coating for addressing the multiple challenges associated with the clinical adoption of porous iron.</p>

Topics
  • porous
  • impedance spectroscopy
  • extrusion
  • iron
  • biocompatibility