People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Heiland, Max
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Titanium vs PEO Surface-Modified Magnesium Plate Fixation in a Mandible Bone Healing Model in Sheep.citations
- 2024Titanium versus plasma electrolytic oxidation surface-modified magnesium miniplates in a forehead secondary fracture healing model in sheep.citations
- 2023Osteogenic Effect of a Bioactive Calcium Alkali Phosphate Bone Substitute in Humanscitations
- 2023A tissue engineered 3D printed calcium alkali phosphate bioceramic bone graft enables vascularization and regeneration of critical-size discontinuity bony defects in vivo.citations
- 2022Long-term in vivo observations show biocompatibility and performance of ZX00 magnesium screws surface-modified by plasma-electrolytic oxidation in Göttingen miniature pigs.citations
- 2022Biomechanical Comparison of WE43-Based Magnesium vs. Titanium Miniplates in a Mandible Fracture Model in Sheep.citations
- 2022Towards mechanobiologically optimized mandible reconstruction: CAD/CAM miniplates vs. reconstruction plates for fibula free flap fixation: A finite element study.citations
- 2021Improved in vivo osseointegration and degradation behavior of PEO surface-modified WE43 magnesium plates and screws after 6 and 12 months.citations
- 2020Rotational UV-lithography using flexible chromium coated polymer masks for the fabrication of microstructured dental implant surfaces: a proof of concept
- 2018Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability
Places of action
Organizations | Location | People |
---|
article
Improved in vivo osseointegration and degradation behavior of PEO surface-modified WE43 magnesium plates and screws after 6 and 12 months.
Abstract
Magnesium is a highly promising candidate with respect to its future use as a material for resorbable implants. When magnesium degrades, hydrogen gas is released. High doses of gas emergence are reported to impair osseointegration and may therefore lead to fixation failure. The successful delay and reduction of the degradation rate by applying plasma electrolytic oxidation (PEO) as a post processing surface modification method for magnesium alloy has recently been demonstrated. The aim of this study was thus to compare the degradation behavior of a WE43-based plate system with and without respective PEO surface modification and to further investigate osseointegration, as well as the resulting effects on the surrounding bony tissue of both variants in a miniature pig model. WE43 magnesium screws and plates without (WE43) and with PEO surface modification (WE43-PEO) were implanted in long bones of Göttingen Miniature Pigs. At six and twelve months after surgery, micro-CT and histomorphometric analysis was performed. Residual screw volume (SV/TV; WE43: 28.8 ± 21.1%; WE43-PEO: 62.9 ± 31.0%; p = 0.027) and bone implant contact area (BIC; WE43: 18.1 ± 21.7%; WE43-PEO: 51.6 ± 27.7%; p = 0.015) were increased after six months among the PEO-modified implants. Also, surrounding bone density within the cortical bone was not affected by surface modification (BVTV; WE43: 76.7 ± 13.1%; WE43-PEO: 73.1 ± 16.2%; p = 0.732). Intramedullar (BV/TV; WE43: 33.2 ± 16.7%; WE43-PEO 18.4 ± 9.0%; p = 0.047) and subperiosteal (bone area; WE43: 2.6 ± 3.4 mm2; WE43-PEO: 6,9 ± 5.2 mm2; p = 0.049) new bone formation was found for both, surface-modified and non-surface-modified groups. After twelve months, no significant differences of SV/TV and BV/TV were found between the two groups. PEO surface modification of WE43 plate systems improved osseointegration and significantly reduced the degradation rate within the first six months in vivo. Osteoconductive and osteogenic stimulation by WE43 magnesium implants led to overall increased bone growth, when prior PEO surface modification was conducted.