Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tallia, Francesca

  • Google
  • 5
  • 39
  • 155

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium15citations
  • 2021Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium15citations
  • 2018Bouncing and 3D printable hybrids with self-healing properties55citations
  • 2014Novel Bone-Like Porous Glass Coatings on Al<sub>2</sub>O<sub>3</sub> Prosthetic Substrates10citations
  • 2012Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements60citations

Places of action

Chart of shared publication
Badaoui, Aida
1 / 2 shared
Maçon, Alb
1 / 4 shared
Pou, Juan
1 / 11 shared
Del Val, Jesus
1 / 1 shared
Riveiro, Antonio
1 / 5 shared
Lusquiños, F.
1 / 2 shared
Reis, Rui L.
2 / 189 shared
Solanki, Anu
2 / 3 shared
Pires, Ricardo A.
2 / 30 shared
Amorim, Sara
2 / 11 shared
Jones, Julian R.
2 / 20 shared
Quintero, Felix
1 / 2 shared
Costa, Ds
1 / 1 shared
Comesaña, R.
1 / 3 shared
Riveiro Rodríguez, Antonio
1 / 12 shared
Comesaña Piñeiro, Rafael
1 / 12 shared
Costa, Diana S.
1 / 1 shared
Jones, Julian Raymond
1 / 3 shared
Del Val Garcia, Jesús
1 / 11 shared
Lusquiños Rodríguez, Fernando
1 / 13 shared
Quintero Martínez, Félix
1 / 6 shared
Pou Saracho, Juan María
1 / 15 shared
Maçon, Anthony L. B.
1 / 1 shared
Badaoui Fernández, Aida
1 / 8 shared
Russo, Laura
1 / 4 shared
Shi, Xiaomeng
1 / 1 shared
Stevens, Molly M.
1 / 23 shared
Lee, Peter D.
1 / 43 shared
Chevalier, Jerome
1 / 12 shared
Meille, Sylvain
1 / 44 shared
Li, Siwei
1 / 4 shared
Steele, Joseph A. M.
1 / 2 shared
Cipolla, Laura
1 / 1 shared
Orrin, Alh
1 / 1 shared
Chen, Shu
1 / 2 shared
Baino, Francesco
1 / 22 shared
Verne, Enrica
1 / 22 shared
Vitale Brovarone, Chiara
1 / 23 shared
Gervasio, Cristina
1 / 1 shared
Chart of publication period
2021
2018
2014
2012

Co-Authors (by relevance)

  • Badaoui, Aida
  • Maçon, Alb
  • Pou, Juan
  • Del Val, Jesus
  • Riveiro, Antonio
  • Lusquiños, F.
  • Reis, Rui L.
  • Solanki, Anu
  • Pires, Ricardo A.
  • Amorim, Sara
  • Jones, Julian R.
  • Quintero, Felix
  • Costa, Ds
  • Comesaña, R.
  • Riveiro Rodríguez, Antonio
  • Comesaña Piñeiro, Rafael
  • Costa, Diana S.
  • Jones, Julian Raymond
  • Del Val Garcia, Jesús
  • Lusquiños Rodríguez, Fernando
  • Quintero Martínez, Félix
  • Pou Saracho, Juan María
  • Maçon, Anthony L. B.
  • Badaoui Fernández, Aida
  • Russo, Laura
  • Shi, Xiaomeng
  • Stevens, Molly M.
  • Lee, Peter D.
  • Chevalier, Jerome
  • Meille, Sylvain
  • Li, Siwei
  • Steele, Joseph A. M.
  • Cipolla, Laura
  • Orrin, Alh
  • Chen, Shu
  • Baino, Francesco
  • Verne, Enrica
  • Vitale Brovarone, Chiara
  • Gervasio, Cristina
OrganizationsLocationPeople

article

Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium

  • Badaoui, Aida
  • Maçon, Alb
  • Pou, Juan
  • Del Val, Jesus
  • Riveiro, Antonio
  • Lusquiños, F.
  • Reis, Rui L.
  • Solanki, Anu
  • Pires, Ricardo A.
  • Amorim, Sara
  • Jones, Julian R.
  • Quintero, Felix
  • Tallia, Francesca
  • Costa, Ds
  • Comesaña, R.
Abstract

The repair of articular cartilage lesions in weight-bearing joints remains as a significant challenge due to the low regenerative capacity of this tissue. Hydrogels are candidates to repair lesions as they have similar properties to cartilage extracellular matrix but they are unable to meet the mechanical and biological requirements for a successful outcome. Here, we reinforce hyaluronic acid (HA) hydrogels with 13-93-lithium bioactive glass micro- and nanofibres produced by laser spinning. The glass fibres are a reinforcement filler and a platform for the delivery of therapeutic lithium-ions. The elastic modulus of the composites is more than three times higher than in HA hydrogels. Modelling of the reinforcement corroborates the experimental results. ATDC5 chondrogenic cells seeded on the composites are viable and more proliferation occurs on the hydrogels containing fibres than in HA hydrogels alone. Furthermore, the chondrogenic behavior on HA constructs with fibres containing lithium is more marked than in hydrogels with no-lithium fibres.

Topics
  • impedance spectroscopy
  • glass
  • glass
  • composite
  • Lithium
  • spinning