People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ajalloueian, Fatemeh
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Effect of ethylene oxide and gamma sterilization on surface texture of films and electrospun poly(ε-caprolactone-co-p-dioxanone) (PCLDX) scaffolds
- 2021The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications:A focus on silk fibroin-based scaffoldscitations
- 2021Physical and Oxidative Stability of Low-Fat Fish Oil-in-Water Emulsions Stabilized with Black Soldier Fly (Hermetia illucens) Larvae Protein Concentratecitations
- 2021The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applicationscitations
- 2019Thread-Like Radical-Polymerization via Autonomously Propelled (TRAP) Botscitations
- 2018Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineeringcitations
- 2018Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineeringcitations
- 2017Rheological properties of agar and carrageenan from Ghanaian red seaweedscitations
- 2015Investigation of Human Mesenchymal Stromal Cells Cultured on PLGA or PLGA/Chitosan Electrospun Nanofiberscitations
Places of action
Organizations | Location | People |
---|
article
The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications
Abstract
<p>3D scaffolds are in the center of attention for tissue engineering applications. Whilst many studies have focused on the biological properties of scaffolds, less attention has been paid to meeting the biomechanics of the target tissues. In this work, we show how using the same original biomaterial, but different fabrication techniques can lead to a broad range of structural, mechanical, and biological characteristics. Starting with silk fibroin filament as our base biomaterial, we employed electrospinning, film casting, and weft knitting as different scaffold fabrication techniques. Among these three, the weft knit scaffold showed outstanding cell-scaffold interaction including full 3D cell attachment, complete cell coverage around individual filaments, and in-depth cell infiltration. Post-fabrication degumming of silk filament yarns resulted in more bulky and less open pores for the silk fibroin knit scaffold. The decreased pore size after degumming of knit scaffold alleviated the need to in-advance pore filling (a requisite for increasing cell adhesion in a typical knit scaffold having big pores). From a mechanical viewpoint, the weft knit scaffold shows the highest mechanical strength alongside with far better extensibility. Interestingly, the silk filament weft knit scaffold (in the course direction) was 100 and 1000 times more compliant than silk fibroin film and electrospun web, respectively. The observed effect of material type and fabrication technique highlights the suitability of silk fibroin weft-knit scaffolds for the regeneration of load-bearing soft tissues such as urine bladder.</p>