People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Souri, Ali Reza
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Corrosion resistance, nano-mechanical properties, and biocompatibility of Mg-plasma-implanted and plasma-etched Ta/TaN hierarchical multilayered coatings on the nitrided AZ91 Mg alloycitations
- 2021Enhanced corrosion resistance, antibacterial properties, and biocompatibility by hierarchical hydroxyapatite/ciprofloxacin-calcium phosphate coating on nitrided NiTi alloycitations
- 2021Effects of the tantalum intermediate layer on the nanomechanical properties and biocompatibility of nanostructured tantalum/tantalum nitride bilayer coating deposited by magnetron sputtering on the nickel titanium alloycitations
- 2020EIS and noise study of zirconia-alumina- benzotriazole nano-composite coating applied on Al2024 by the sol-gel methodcitations
- 2019Nano-mechanical properties of zirconia-alumina-benzotriazole nano-composite coating deposited on Al2024 by the sol-gel methodcitations
- 2019Effects of Benzotriazole on nano-mechanical properties of zirconia-alumina-Benzotriazole nanocomposite coating deposited on Al 2024 by the sol-gel methodcitations
Places of action
Organizations | Location | People |
---|
article
Enhanced corrosion resistance, antibacterial properties, and biocompatibility by hierarchical hydroxyapatite/ciprofloxacin-calcium phosphate coating on nitrided NiTi alloy
Abstract
Multi-functional hierarchical coatings are deposited on the nitrided NiTi alloy. The nitrided layer is first deposited by nitrogen plasma immersion ion implantation and a middle layer containing porous hydroxyapatite and ciprofloxacin (Cip) is produced before the top calcium phosphate coating is deposited by the sol-gel method. The thicknesses of the coating and nitrided intermediate layer are about 1.54 μm and 160 nm, respectively and Cip penetrates to a depth of about 530 nm. Calcium phosphate reduces surface defects resulting in a surface roughness of 17 ± 2 nm compared to 34 ± 5 nm of the porous hydroxyapatite coating. The corrosion resistance is improved due to reduced defects and localized corrosion as manifested by the decrease in the Ni<sup>2+</sup> release rate by 11.6% from 0.0198 to 0.0175 mg L<sup>−1</sup> cm<sup>−2</sup>. The bacterial resistance against <i>E. coli</i> is also improved by about 88 times on account of Cip release and good biocompatibility is confirmed by proliferation of MC3T3 cells. This multi-functional hierarchical coating has large potential in orthopedic and dental applications.