Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Olaret, E.

  • Google
  • 1
  • 4
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties29citations

Places of action

Chart of shared publication
Moroni, Lorenzo
1 / 43 shared
Stancu, I. C.
1 / 2 shared
Mota, Carlos
1 / 27 shared
Van Kampen, Kenny
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Moroni, Lorenzo
  • Stancu, I. C.
  • Mota, Carlos
  • Van Kampen, Kenny
OrganizationsLocationPeople

article

Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties

  • Moroni, Lorenzo
  • Olaret, E.
  • Stancu, I. C.
  • Mota, Carlos
  • Van Kampen, Kenny
Abstract

Many tubular tissues such as blood vessels and trachea can suffer long-segmental defects through trauma and disease. With current limitations in the use of autologous grafts, the need for a synthetic substitute is of continuous interest as possible alternatives. Fabrication of these tubular organs is commonly done with techniques such as electrospinning and melt electrowriting using a rotational collector. Current additive manufacturing (AM) systems do not commonly implement the use of a rotational axis, which limits their application for the fabrication of tubular scaffolds. In this study, a four axis extrusion-based AM system similar to fused deposition modeling (FDM) has been developed to create tubular hollow scaffolds. A rectangular and a diamond pore design were further investigated for mechanical characterization, as a standard and a biomimicry pore geometry respectively. We demonstrated that in the radial compression mode the diamond pore design had a higher Young's modulus (19,8 +/- 0,7 MPa compared to 2,8 +/- 0,5 MPa), while in the longitudinal tensile mode the rectangular pore design had a higher Young's modulus (5,8 +/- 0,2 MPa compared to 0,1 +/- 0,01 MPa). Three-point bending analyses revealed that the diamond pore design is more resistant to luminal collapse compared to the rectangular design. This data showed that by changing the scaffold pore design, a wide range of mechanical properties could be obtained. Furthermore, a full control over scaffold design and geometry can be achieved with the developed 4-axis extrusion-based system, which has not been reported with other techniques. This flexibility allow the manufacturing of scaffolds for diverse tubular tissue regeneration applications by designing suitable deposition patterns to match their mechanical pre-requisites.

Topics
  • Deposition
  • impedance spectroscopy
  • pore
  • melt
  • additive manufacturing
  • electrospinning