People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Choińska, Emilia
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024A comparative study of oxidation behavior of Co4Sb12 and Co4Sb10.8Se0.6Te0.6 skutterudite thermoelectric materials fabricated via fast SHS-PPS routecitations
- 20223D-Printed Drug Delivery Systems: The Effects of Drug Incorporation Methods on Their Release and Antibacterial Efficiency
- 2022The Utility of Recycled Rice Husk-Reinforced PVC Composite Profiles for Façade Claddingcitations
- 2021Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder Bed Fusion (LPBF)citations
- 2021Plasma modification of carbon coating produced by RF CVD on oxidized NiTi shape memory alloy under glow-discharge conditionscitations
- 2020Molding Binder Influence on the Porosity and Gas Permeability of Ceramic Casting Moldscitations
- 2020The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3D-printed PCLcitations
- 2020The effect of introduction of filament shift on degradation behaviour of PLGA- and PLCL-based scaffolds fabricated via additive manufacturingcitations
- 2019Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defectscitations
- 2018Nanobead-on-string composites for tendon tissue engineeringcitations
- 2018Micro and nanoscale characterization of poly(DL-lactic-co-glycolic acid) films subjected to the L929 cells and the cyclic mechanical loadcitations
- 2018Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological applicationcitations
- 2017Radiopaque biodegradable polymeric composites for in vivo monitoring of TE products by X-rays imaging
- 2016Increase of radiopacity of PCL scaffolds for their in vivo monitoring using x – rays imaging
- 2016Fabrication and characterization of electrospun bionanocomposites of poly (vinyl alcohol)/ nanohydroxyapatite/ cellulose nanofiberscitations
- 2013Investigations of polycaprolactone / gelatin blends in terms of their miscibilitycitations
Places of action
Organizations | Location | People |
---|
article
The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3D-printed PCL
Abstract
<p>Fused Deposition Modelling (FDM) technique has been widely utilized in fabrication of 3D porous scaffolds for tissue engineering (TE) applications. Surprisingly, although there are many publications devoted to the architectural features of the 3D scaffolds fabricated by the FDM, none of them give us evident information about the impact of the diameter of the fibres on material properties. Therefore, the aim of this study was to investigate, for the first time, the effect of the diameter of 3D-printed PCL fibres on variations in their microstructure and resulting mechanical behaviour. The fibres made of poly(ε-caprolactone) (PCL) were extruded through commonly used types of nozzles (inner diameter ranging from 0.18 mm to 1.07 mm) by means of FDM technique. Static tensile test and atomic force microscopy working in force spectroscopy mode revealed strong decrease in the Young's modulus and yield strength with increasing fibre diameter in the investigated range. To explain this phenomenon, we conducted differential scanning calorimetry, wide-angle X-ray-scattering, Fourier-transform infrared spectroscopy, infrared and polarized light microscopy imaging. The obtained results clearly showed that the most prominent effect on the obtained microstructures and mechanical properties had different cooling and shear rates during fabrication process causing changes in supramolecular interactions of PCL. The observed fibre size-dependent formation of hydrogen bonds affected the crystalline structure and its stability. Summarising, this study clearly demonstrates that the diameter of 3D-printed fibres has a strong effect on obtained microstructure and mechanical properties, therefore should be taken into consideration during design of the 3D TE scaffolds.</p>