People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vieira, Tânia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Preparation and Characterization of Zinc Ferrite and Gadolinium Iron Garnet Composite for Biomagnetic Applicationscitations
- 2024Bioactive Hydroxyapatite Aerogels with Piezoelectric Particlescitations
- 2023Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillerscitations
- 2023Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillerscitations
- 2019Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineeringcitations
- 2018Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineeringcitations
- 2015Electrospun mats of biodegradable chitosan-based polyurethane urea
Places of action
Organizations | Location | People |
---|
article
Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering
Abstract
<p>The composition and architecture of a scaffold determine its supportive role in tissue regeneration. In this work, we demonstrate the feasibility of obtaining a porous electrospun fibrous structure from biodegradable polyurethanes (Pus) synthesized using polycaprolactone-diol as soft segment and, as chain extenders, chitosan (CS) and/or dimethylol propionic acid. Fourier transform infrared spectroscopy and proton nuclear magnetic resonance confirmed the syntheses. Fibre mats' properties were analysed and compared with those of solvent cast films. Scanning electron microscopy images of the electrospun scaffolds revealed fibres with diameters around 1 μm. From tensile tests, we found that Young's modulus increases with CS content and is higher for films (2.5 MPa to 6.5 MPa) than for the corresponding fibre mats (0.8 MPa to 3.2 MPa). The use of CS as the only chain extender improves recovery ratio and resilience. From X-ray diffraction, a higher crystalline degree was identified in fibre mats than in the corresponding films. Films' wettability was enhanced by the presence of CS as shown by the decrease of water contact angle. X-ray photoelectron spectroscopy revealed that while ester groups are predominant at the films' surface, ester and urethanes are present in similar concentrations at fibres' surface, favouring the interaction with water molecules. Both films and fibres undergo hydrolytic degradation. In vitro evaluation was performed with human dermal fibroblasts. No PU sample revealed cytotoxicity. Cells adhered to fibre mats better than to films and proliferation was observed only for samples of CS-containing PUs. Results suggest that electrospun fibres of CS-based polyurethanes are good candidate scaffolds for soft tissue engineering.</p>