People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stamboulis, Artemis
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023A Novel Approach for Powder Bed Fusion of Ceramics Using Two Laser Systemscitations
- 2022Processing and interpretation of core‐electron XPS spectra of complex plasma‐treated polyethylene‐based surfaces using a theoretical peak model
- 2021Antimicrobial bioceramics for biomedical applicationscitations
- 2021An Overview of Sputtering Hydroxyapatite for BiomedicalApplicationcitations
- 2019Mechanical testing of antimicrobial biocomposite coating on metallic medical implants as drug delivery systemcitations
- 2017Types of ceramics: Material classcitations
- 2017Types of ceramics : material class
- 2015Nano-hydroxyapatite deposition on titanium using peptide aptamers
- 2015Functionalization of biomedical surfaces by peptide aptamers
- 2014Electrospun Fibres of Polyhydroxybutyrate Synthesized by Ralstonia eutropha from Different Carbon Sourcescitations
- 2014Electrospun Fibres of Polyhydroxybutyrate Synthesized by Ralstonia eutropha from Different Carbon Sourcescitations
- 2014Use of inter-fibril spaces among electrospun fibrils as ion-fixation and nano-crystallization
- 2014Nanoclay addition to a conventional glass ionomer cementscitations
- 2014Electrospun fibres of polyhydroxybutyrate synthesized by ralstonia eutropha from different carbon sourcescitations
- 2014Effect of nanoclay dispersion on the properties of a commercial glass ionomer cementcitations
- 2013Sol-Gel Preparation of Silica-Based Nano-Fibers for Biomédical Applications
- 2013Active screen plasma nitriding enhances cell attachment to polymer surfacescitations
- 2013Nitrogen plasma surface modification enhances cellular compatibility of aluminosilicate glasscitations
- 2012Durability and reliability of medical polymerscitations
- 2011An X-ray micro-fluorescence study to investigate the distribution of Al, Si, P and Ca ions in the surrounding soft tissue after implantation of a calcium phosphate-mullite ceramic composite in a rabbit animal modelcitations
- 2010Effect of active screen plasma nitriding on the biocompatibility of UHMWPE surfaces
- 2008Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses
- 2007Real-time nucleation and crystallisation studies of a fluorapatite glass-ceramics using small-angle neutron scattering and neutron diffractioncitations
- 2007Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopycitations
- 2006The influence of montmorillonite clay reinforcement on the performance of a glass ionomer restorativecitations
- 2006Real Time Neutron Diffraction Studies of apatite glass ceramicscitations
- 2002Mechanical properties of biodegradable polymer sutures coated with bioactive glasscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical testing of antimicrobial biocomposite coating on metallic medical implants as drug delivery system
Abstract
<p>Post-operative infection often occurs following orthopedic and dental implant placement requiring systemically administered antibiotics. However, this does not provide long-term protection. Over the last few decades, alternative methods involving slow drug delivery systems based on biodegradable poly-lactic acid and antibiotic loaded hydroxyapatite microspheres were developed to prevent post-operative infection. In this study, thermally anodised and untreated Ti6Al4V discs were coated with Poly-Lactic Acid (PLA) containing Gentamicin (Gm) antibiotic-loaded coralline Hydroxyapatite (HAp) are investigated. Following chemical characterization, mechanical properties of the coated samples were measured using nanoindentation and scratch tests to determine the elastic modulus, hardness and bonding adhesion between film and substrate. It was found that PLA biocomposite multilayered films were around 400 nm thick and the influence and effect of the substrate were clearly observed during the nanoindentation studies with heavier loads. Scratch tests of PLA coated samples conducted at ~160 nm depth showed the minimal difference in the measured friction between Gm and non Gm containing films. It is also observed that the hardness values of PLA film coated anodised samples ranged from 0.45 to 1.9 GPa (dependent on the applied loads) against untreated coated samples which ranged from 0.28 to 0.8 GPa.</p>