Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Akilal, N.

  • Google
  • 1
  • 7
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Cowries derived aragonite as raw biomaterials for bone regenerative medicine20citations

Places of action

Chart of shared publication
Rammal, H.
1 / 4 shared
Bercu, N.
1 / 1 shared
Sayen, S.
1 / 1 shared
Khelfaoui, Y.
1 / 3 shared
Lemaire, F.
1 / 1 shared
Gangloff, Sophie
1 / 4 shared
Kerdjoudj, Halima
1 / 11 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Rammal, H.
  • Bercu, N.
  • Sayen, S.
  • Khelfaoui, Y.
  • Lemaire, F.
  • Gangloff, Sophie
  • Kerdjoudj, Halima
OrganizationsLocationPeople

article

Cowries derived aragonite as raw biomaterials for bone regenerative medicine

  • Rammal, H.
  • Bercu, N.
  • Sayen, S.
  • Akilal, N.
  • Khelfaoui, Y.
  • Lemaire, F.
  • Gangloff, Sophie
  • Kerdjoudj, Halima
Abstract

Carbonate apatites are sought as a bone substitute due to their biocompatibility and excellent resorbability. The present study deals with Cowrie's shell derived powder (CSDP) as natural biomaterial for bone regenerative medicine. Structural and physicochemical analysis showed that Cowrie's shells, presenting brick and mortar microstructures, were mainly composed of aragonite crystals, which were converted into poorly crystalline B-type carbonate apatite once soaked, at 37 °C, in simulated body fluid for 7 days, reflecting bioactive features. Cytotoxic assays showed that CSDP boosted human stem cell proliferation over the study time compared to nacre derived powder (NDP), used as positive control. Human stem cells adopted a flattened morphology and established physical contact with CSDP, signature of a good biocompatibility. Thus, these results suggested that CSDP presents a great interest for bone regenerative medicine, and could be a useful and versatile carrier/scaffold for bone tissue engineering or a raw material for 3D printed orthopedic devices.

Topics
  • microstructure
  • morphology
  • biomaterials
  • biocompatibility