Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wysocki, Bartłomiej

  • Google
  • 14
  • 51
  • 759

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Compositescitations
  • 2020Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Melting12citations
  • 2019The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response102citations
  • 2019New approach to amorphization of alloys with low glass forming ability via selective laser melting60citations
  • 2018The Influence of Selective Laser Melting (SLM) Process Parameters on In-Vitro Cell Response55citations
  • 2018Investigation of the relationship between morphology and permeability for open-cell foams using virtual materials testing38citations
  • 2018Structure and porosity of titanium scaffolds manufactured by selective laser melting1citations
  • 2017Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)167citations
  • 2017Fabrication of custom designed spinal disc replacement for veterinary applicationscitations
  • 2017Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants234citations
  • 2016The process of design and manufacturing of titanium scaffolds in the SLM technology for tissue engineeringcitations
  • 2016Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering89citations
  • 2016The Novel Scanning Strategy For Fabrication Metallic Glasses By Selective Laser Meltingcitations
  • 2015CNTs as ion carriers in formation of calcium phosphate coatings1citations

Places of action

Chart of shared publication
Choma, Tomasz
1 / 6 shared
Leonowicz, Marcin
2 / 26 shared
Li, X.
1 / 71 shared
Krawczynska, Agnieszka
1 / 7 shared
Swieszkowski, Wojciech
1 / 15 shared
Żrodowski, Cezary
1 / 2 shared
Błyskun, Piotr
2 / 11 shared
Wróblewski, Rafał
3 / 11 shared
Kulikowski, Krzysztof
1 / 18 shared
Małachowska, Aleksandra
1 / 3 shared
Moneta, Grzegorz
1 / 2 shared
Masset, Patrick
1 / 2 shared
Cetner, Tomasz
1 / 2 shared
Jaroszewicz, Jakub
2 / 23 shared
Dobkowska, Anna
1 / 33 shared
Ciftci, Jakub
1 / 8 shared
Yuan, L.
1 / 7 shared
Morończyk, Bartosz
1 / 12 shared
Chulist, Robert
1 / 23 shared
Żrodowski, Łukasz
4 / 12 shared
Szustecki, Maciej
1 / 1 shared
Sitek, Ryszard
2 / 38 shared
Wiśniewski, Paweł
1 / 26 shared
Mizera, Jarosław
1 / 113 shared
Brynk, Tomasz
2 / 19 shared
Idaszek, Joanna
3 / 10 shared
Kurzydłowski, Krzysztof
7 / 114 shared
Buhagiar, Joseph
2 / 10 shared
Święszkowski, Wojciech
11 / 53 shared
Szlązak, Karol
3 / 10 shared
Krawczyńska, Agnieszka
2 / 15 shared
Zdunek, Joanna
3 / 34 shared
Ferenc, Jarosław
1 / 11 shared
Adamczyk-Cieślak, Bogusława
1 / 77 shared
Pisarek, Marcin
1 / 16 shared
Yamamoto, A.
1 / 10 shared
Rożniatowski, Krzysztof
2 / 15 shared
Westhoff, Daniel
1 / 3 shared
Wejrzanowski, Tomasz
1 / 27 shared
Šedivý, Ondřej
1 / 1 shared
Schmidt, Volker
1 / 32 shared
Skibiński, Jakub
1 / 7 shared
Skalski, Konstanty
2 / 2 shared
Makuch, Anna
2 / 2 shared
Jankowski, Krzysztof
2 / 2 shared
Maj, Piotr
2 / 15 shared
Chmielewska, Agnieszka
1 / 5 shared
Sterna, Jacek
1 / 1 shared
Strzelczyk, Karolina
1 / 1 shared
Leszczyńska, D.
1 / 1 shared
Dybala, B.
1 / 1 shared
Chart of publication period
2022
2020
2019
2018
2017
2016
2015

Co-Authors (by relevance)

  • Choma, Tomasz
  • Leonowicz, Marcin
  • Li, X.
  • Krawczynska, Agnieszka
  • Swieszkowski, Wojciech
  • Żrodowski, Cezary
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Kulikowski, Krzysztof
  • Małachowska, Aleksandra
  • Moneta, Grzegorz
  • Masset, Patrick
  • Cetner, Tomasz
  • Jaroszewicz, Jakub
  • Dobkowska, Anna
  • Ciftci, Jakub
  • Yuan, L.
  • Morończyk, Bartosz
  • Chulist, Robert
  • Żrodowski, Łukasz
  • Szustecki, Maciej
  • Sitek, Ryszard
  • Wiśniewski, Paweł
  • Mizera, Jarosław
  • Brynk, Tomasz
  • Idaszek, Joanna
  • Kurzydłowski, Krzysztof
  • Buhagiar, Joseph
  • Święszkowski, Wojciech
  • Szlązak, Karol
  • Krawczyńska, Agnieszka
  • Zdunek, Joanna
  • Ferenc, Jarosław
  • Adamczyk-Cieślak, Bogusława
  • Pisarek, Marcin
  • Yamamoto, A.
  • Rożniatowski, Krzysztof
  • Westhoff, Daniel
  • Wejrzanowski, Tomasz
  • Šedivý, Ondřej
  • Schmidt, Volker
  • Skibiński, Jakub
  • Skalski, Konstanty
  • Makuch, Anna
  • Jankowski, Krzysztof
  • Maj, Piotr
  • Chmielewska, Agnieszka
  • Sterna, Jacek
  • Strzelczyk, Karolina
  • Leszczyńska, D.
  • Dybala, B.
OrganizationsLocationPeople

article

The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response

  • Brynk, Tomasz
  • Idaszek, Joanna
  • Kurzydłowski, Krzysztof
  • Wysocki, Bartłomiej
  • Buhagiar, Joseph
  • Święszkowski, Wojciech
  • Szlązak, Karol
Abstract

Selective Laser Melting (SLM) is a powder-bed-based additive manufacturing method, using a laser beam, which can be used to produce metallic scaffolds for bone regeneration. However, this process also has a few disadvantages. One of its drawbacks is the necessity of post-processing in order to improve the surface finish. Another drawback lies in the removal of unmelted powder particles from the build. In this study, the influence of chemical polishing of SLM fabricated titanium scaffolds on their mechanical strength and in vitro cellular response was investigated. Scaffolds with bimodal pore size (200 µm core and 500 µm shell) were fabricated by SLM from commercially pure titanium powder and then chemically treated in HF/HNO3 solutions to remove unmelted powder particles. The cell viability and mechanical strength were compared between as-made and chemically-treated scaffolds. The chemical treatment was successful in the removal of unmelted powder particles from the titanium scaffold. The Young’s modulus of the fabricated cellular structures was of 42.7 and 13.3 GPa for as-made and chemically-treated scaffolds respectively. These values are very similar to the Young’s modulus of living human bone. Chemical treatment did not affect negatively cell proliferation and differentiation. Additionally, the chemically-treated scaffolds had a twofold increase in colonization of osteoblast cells migrating out of multicellular spheroids. Furthermore, X-ray computed microtomography confirmed that chemically-treated scaffolds met the dimensions originally set in the CAD models. Therefore, chemical-treatment can be used as a tool to cancel the discrepancies between the designed and fabricated objects, thus enabling fabrication of finer structures with regular struts and high resolution.

Topics
  • impedance spectroscopy
  • pore
  • surface
  • strength
  • selective laser melting
  • titanium
  • collision-induced dissociation
  • polishing
  • commercially pure titanium
  • titanium powder