People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Davidson, Matthew G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Comparison of Cyclic and Linear Poly(lactide)s Using Small-Angle Neutron Scattering
- 2020Organocatalysis for versatile polymer degradationcitations
- 2020Low-temperature and purification-free stereocontrolled ring-opening polymerisation of lactide in supercritical carbon dioxidecitations
- 2017Zirconium amine tris(phenolate):A more effective initiator for biomedical lactidecitations
- 2017Zirconium amine tris(phenolate)citations
- 2016Aminopiperidine based complexes for lactide polymerisationcitations
- 2014Preparation of stereoregular isotactic poly(mandelic acid) through organocatalytic ring-opening polymerization of a cyclic O-carboxyanhydridecitations
- 2013Synthesis and structural characterization of group 4 metal alkoxide complexes of N, N, N ′,N ′-tetrakis(2-hydroxyethyl)ethylenediamine and their use as initiators in the ring-opening polymerization (ROP) of rac -lactide under industrially relevant conditionscitations
- 2009Synthesis and structure of aluminium amine-phenolate complexescitations
- 2006Synthesis and X-ray structures of new titanium(IV) aryloxides and their exploitation for the ring opening polymerization of epsilon-caprolactonecitations
Places of action
Organizations | Location | People |
---|
article
Zirconium amine tris(phenolate)
Abstract
<p>Here a zirconium amine tris(phenolate) is used as the initiator for the production of polylactide for biomedical applications, as a replacement for a tin initiator (usually tin octanoate). The ring opening polymerization (ROP) was carried out in the melt at 130°C. The zirconium-catalyzed PLA (PLA-Zr) required 30min, resulting in a polydispersity index (PDI) of 1.17, compared to 1h and PDI=1.77 for tin-catalyzed PLA (PLA-Sn). PLA-Zr and PLA-Sn supported osteosarcoma cell (MG63) culture to the same extent (cell number, morphology, extracellular matrix production and osteogenic function) until day 14 when the PLA-Zr showed increased cell number, overall extracellular matrix production and osteogenic function. To conclude, the reduction in reaction time, controllable microstructure and biologically benign nature of the zirconium amine tris(phenolate) initiator shows that it is a more effective initiator for ROP of polylactide for biomedical applications.</p>