Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Duraes, L.

  • Google
  • 2
  • 6
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Superparamagnetic core-shell nanocomplexes doped with Yb3+:Er3+/Ho3+ rare-earths for upconversion fluorescence14citations
  • 2017Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells32citations

Places of action

Chart of shared publication
Santos, Rf
1 / 8 shared
Campos Goncalves, I.
1 / 1 shared
Costa, Bfo
1 / 1 shared
Reis, Salette
1 / 9 shared
Gaspar, A.
1 / 3 shared
Costa Lima, Sac
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Santos, Rf
  • Campos Goncalves, I.
  • Costa, Bfo
  • Reis, Salette
  • Gaspar, A.
  • Costa Lima, Sac
OrganizationsLocationPeople

article

Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells

  • Reis, Salette
  • Gaspar, A.
  • Costa Lima, Sac
  • Duraes, L.
Abstract

A multifunctional nanomedicine platform was designed and evaluated for efficient colon cancer therapy by a combinatorial therapeutic approach based on a chemotherapeutic drug and mild hyperthermia. Advantage was taken from the dual role of methotrexate (MTX), as folate receptor-targeting, overexpressed in tumor cells, and as anticancer drug. Incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) allows to heat cancer cells externally through an alternating magnetic field. The developed nanocarrier was based on polyethylene glycol-polylactic acid (PEG-PLA) nanospheres to improve biocompatibility, enhancing their targeting by prolonging blood circulation time. By an emulsion-evaporation method the nanospheres were produced and then characterized for size distribution, zeta-potential, in vitro drug release profile and cellular studies. The co-delivery of MTX and SPIONs on PEG-PLA nanospheres resulted in nanocarriers with a size of 160 nm in diameter, a polydispersity index below 0.2 and a zeta potential of ca. -18 mV. Multifunctional nanospheres were monodisperse and stable up to 3 months. MTX was released preferentially under mild hyperthermia conditions. The multifunctional nanospheres were able to increase the cytotoxicity of MTX towards Caco-2 and SW-480 colon cancer cells, in comparison to free drug. Also, the nanospheres allowed the incorporated MTX to induce greater cell cycle arrest and apoptotic effects than the free MTX. This study provides evidences that MTX-SPIONs-PEG-PLA nanospheres are a promising solution to address colorectal cancer over-expressing folate receptors, by a combinatory approach.

Topics
  • nanoparticle
  • iron
  • evaporation
  • polydispersity
  • biocompatibility