People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Valle-Delgado, Juan José
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Characterization of cell-biomaterial adhesion forces that influence 3D cell culture
- 2021Cellulose nanofibers/lignin particles/tragacanth gum nanocomposite hydrogels for biomedical applications
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2019Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based compositescitations
- 2017Adsorption of Proteins on Colloidal Lignin Particles for Advanced Biomaterialscitations
- 2016Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling propertiescitations
- 2015Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling propertiescitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling properties
Abstract
<p>Hydrogen peroxide is the product of various enzymatic reactions, and is thus typically utilized as the analyte in biosensors. However, its detection with conventional materials, such as noble metals or glassy carbon, is often hindered by slow kinetics and biofouling of the electrode. In this study electrochemical properties and suitability to peroxide detection as well as ability to resist biofouling of Pt-doped ta-C samples were evaluated. Pure ta-C and pure Pt were used as references. According to the results presented here it is proposed that combining ta-C with Pt results in good electrocatalytic activity towards H2O2 oxidation with better tolerance towards aqueous environment mimicking physiological conditions compared to pure Pt. In biofouling experiments, however, both the hybrid material and Pt were almost completely, blocked after immersion in protein-containing solutions and did not produce any peaks for ferrocenemethanol oxidation or reduction. On the contrary, it was still possible to obtain clear peaks for H2O2 oxidation with them after similar treatment Moreover, quartz crystal microbalance experiment showed less protein adsorption on the hybrid sample compared to Pt which is also supported by the electrochemical biofouling experiments for H2O2 detection. (C) 2015 Elsevier B.V. All rights reserved.</p>