People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Österberg, Monika
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Biodegradation of Lignocellulose-Polyester Composite Films in Freshwater and Seawater Conditionscitations
- 2024Adsorption of sulphonated lignin-carbohydrate complexes (LCCs) onto cellulose surfaces
- 2024Hydrophobized lignin nanoparticle-stabilized Pickering foams : building blocks for sustainable lightweight porous materialscitations
- 2023Characterization of cell-biomaterial adhesion forces that influence 3D cell culture
- 2022Durable Biopolymer Films From Lignin-Carbohydrate Complex Derived From a Pulp Mill Side Streamcitations
- 2022Hybrid films from cellulose nanomaterials—properties and defined optical patternscitations
- 2021Durable Biopolymer Films From Lignin-Carbohydrate Complex Derived From a Pulp Mill Side Streamcitations
- 2021Cellulose nanofibers/lignin particles/tragacanth gum nanocomposite hydrogels for biomedical applications
- 2021Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatingscitations
- 2021Tuning the functional properties of lignocellulosic films by controlling the molecular and supramolecular structure of lignincitations
- 2021Toward waste valorization by converting bioethanol production residues into nanoparticles and nanocomposite filmscitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2020Observing microfibril bundles in wood by small-angle neutron scattering
- 2020Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scatteringcitations
- 2020Moisture-related changes in the nanostructure of woods studied with X-ray and neutron scatteringcitations
- 2019Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based compositescitations
- 2019Small-angle scattering model for efficient characterization of wood nanostructure and moisture behaviourcitations
- 2019Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particlescitations
- 2017Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles
- 2017Adsorption of Proteins on Colloidal Lignin Particles for Advanced Biomaterialscitations
- 2016Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling propertiescitations
- 2015Correlation between cellulose thin film supramolecular structures and interactions with watercitations
- 2015Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling propertiescitations
- 2013Non-ionic assembly of nanofibrillated cellulose and polyethylene glycol grafted carboxymethyl cellulose and the effect of aqueous lubrication in nanocomposite formationcitations
- 2012Interactions between inorganic nanoparticles and cellulose nanofibrilscitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling properties
Abstract
<p>Hydrogen peroxide is the product of various enzymatic reactions, and is thus typically utilized as the analyte in biosensors. However, its detection with conventional materials, such as noble metals or glassy carbon, is often hindered by slow kinetics and biofouling of the electrode. In this study electrochemical properties and suitability to peroxide detection as well as ability to resist biofouling of Pt-doped ta-C samples were evaluated. Pure ta-C and pure Pt were used as references. According to the results presented here it is proposed that combining ta-C with Pt results in good electrocatalytic activity towards H2O2 oxidation with better tolerance towards aqueous environment mimicking physiological conditions compared to pure Pt. In biofouling experiments, however, both the hybrid material and Pt were almost completely, blocked after immersion in protein-containing solutions and did not produce any peaks for ferrocenemethanol oxidation or reduction. On the contrary, it was still possible to obtain clear peaks for H2O2 oxidation with them after similar treatment Moreover, quartz crystal microbalance experiment showed less protein adsorption on the hybrid sample compared to Pt which is also supported by the electrochemical biofouling experiments for H2O2 detection. (C) 2015 Elsevier B.V. All rights reserved.</p>