People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tovar, Nick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 20233D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluationcitations
- 2023Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Modelcitations
- 2022Residual stress estimated by nanoindentation in pontics and abutments of veneered zirconia fixed dental prosthesescitations
- 2022Physiochemical and bactericidal activity evaluationcitations
- 2021Three-Dimensionally-Printed Bioactive Ceramic Scaffoldscitations
- 2021Effect of supplemental acid-etching on the early stages of osseointegrationcitations
- 2020Assessing osseointegration of metallic implants with boronized surface treatmentcitations
- 2019Synergistic effects of implant macrogeometry and surface physicochemical modifications on osseointegrationcitations
- 2019Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffoldscitations
- 2018Form and functional repair of long bone using 3D-printed bioactive scaffoldscitations
- 2014The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materialscitations
- 2014The in vivo effect of P-15 coating on early osseointegrationcitations
- 2014Nanometer-scale features on micrometer-scale surface texturingcitations
- 2012Physicochemical characterization and in vivo evaluation of amorphous and partially crystalline calcium phosphate coatings fabricated on Ti-6Al-4V implants by the plasma spray methodcitations
Places of action
Organizations | Location | People |
---|
article
The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materials
Abstract
<p>In this study, the physicochemical characteristics of calcium phosphate based bioactive ceramics of different compositions and blends presenting similar micro/nanoporosity and micrometer scale surface texture were characterized and evaluated in an in vivo model. Prior to the animal experiment, the porosity, surface area, particle size distribution, phase quantification, and dissolution of the materials tested were evaluated. The bone regenerative properties of the materials were evaluated using a rabbit calvaria model. After 2, 4, and 8 weeks, the animals were sacrificed and all samples were subjected to histologic observation and histomorphometric analysis. The material characterization showed that all materials tested presented variation in particle size, porosity and composition with different degrees of HA/TCP/lower stoichiometry phase ratios. Histologically, the calvarial defects presented temporal bone filling suggesting that all material groups were biocompatible and osteoconductive. Among the different materials tested, there were significant differences found in the amount of bone formation as a function of time. At 8 weeks, the micro/nanoporous material presenting ~ 55%TCP:45%HA composition ratio presented higher amounts of new bone regeneration relative to other blends and a decrease in the amount of soft tissue infiltration.</p>