People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stockinger, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Effect of intercritical annealing on the microstructure and mechanical properties of a PH 13-8 Mo maraging steelcitations
- 2024Multiscale in-situ observations of the micro- and nanostructure of a PH 13-8 Mo maraging steel during austenitizationcitations
- 2023In Situ Observations of the Microstructural Evolution during Heat Treatment of a PH 13-8 Mo Maraging Steelcitations
- 2023Ballistic tests on hot-rolled Ti-6Al-4V platescitations
- 2022Influence of delta ferrite on the impact toughness of a PH 13-8 Mo maraging steelcitations
- 2021Theoretical and experimental investigations of mechanical vibrations of hot hammer forgingcitations
- 2021Dry friction under pressure variation of PACVD TiN surfaces on selected automotive sheet metals for the application in unlubricated metal formingcitations
- 2016Additive Manufacturing via Cold Metal Transfer
- 2014Studies on ductile damage and flow instabilities during hot deformation of a multiphase γ-TiAl alloycitations
- 2014Modelling of the ductile damage behaviour of a beta solidifying gamma titanium aluminide alloy during hot-workingcitations
- 2014Thermomechanical behavior of different Ni-base superalloys during cyclic loading at elevated temperaturescitations
- 2014Modeling of two-phase grain structure in the titanium alloy TI-6AL-4V using cellular automatacitations
- 2013Modeling of dual-phase grain structure in Ti-6Al-4V during isothermal and non-isothermal heat treatment using cellular automata
- 2012Determination of the mechanism of restoration in subtransus hot deformation of Ti-6Al-4Vcitations
- 2012Influence of temperature and strain rate on dynamic softening processes in AllvacR 718PlusTMcitations
- 2011Assessment of dynamic softening mechanisms in Allvac® 718Plus™ by EBSD analysiscitations
- 2009Introduction to an approach based on the (α+β) microstructure of elements of alloy Ti-6Al-4Vcitations
- 2008δ-phase characterization of superalloy Allvac 718 Plus™
- 2007Fatigue analysis of forged aerospace components based on micro structural parameters
Places of action
Organizations | Location | People |
---|
article
Effect of intercritical annealing on the microstructure and mechanical properties of a PH 13-8 Mo maraging steel
Abstract
One method of achieving exceptional ductility and toughness of PH 13-8 Mo maraging steels is to perform agingat high temperatures or for prolonged dwell times, which is referred to as overaging. The increase in ductility andtoughness is primarily related to the formation of high amounts of reverted austenite during aging. An alternativeapproach to elevate the reverted austenite content is to perform intercritical annealing, i.e., annealing in the dualphase field of martensite and austenite, prior to aging. Due to partitioning of substitutional elements duringintercritical annealing, the freshly formed martensite is enriched in Ni after cooling. As a result, the formation ofreverted austenite is facilitated, and high phase fractions can be achieved even at moderate aging temperatures.This study aims to shed light on the full potential of implementing intercritical annealing in the heat treatmentroute of PH 13-8 Mo maraging steels by thoroughly investigating the effect of this heat treatment adaption on themicrostructure, mechanical properties and austenite stability. Overall, it is demonstrated that the addition ofintercritical annealing enables to achieve a well-balanced microstructure showing a promising combination ofstrength, ductility and toughness. By performing intercritical annealing for shorter dwell times, high revertedaustenite contents comparable to those after overaging can be reached. Resulting from a moderate aging temperature,fine β-NiAl precipitates, which were detected by atom probe tomography, are formed withinmartensite, leading to considerably higher strength compared to after overaging. However, the high matrixstrength restricts the mechanically induced transformation of reverted austenite to martensite, as found by in-situhigh-energy X-ray diffraction tensile tests.