People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schimbäck, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Microstructure and Mechanical Properties of Ti-6Al-4V In Situ Alloyed with 3 wt% Cr by Laser Powder Bed Fusion
- 2024Advancements in metal additive manufacturingcitations
- 2022An improved process scan strategy to obtain high-performance fatigue properties for Scalmalloy®citations
- 2022Unique microstructure evolution of a novel Ti-modified Al-Cu alloy processed using laser powder bed fusioncitations
- 2022Alloy design strategy for microstructural-tailored scandium-modified aluminium alloys for additive manufacturingcitations
- 2021Laser powder bed fusion of an engineering intermetallic TiAl alloycitations
- 2019Metallography of Intermetallic Titanium Aluminides – the (Additive) Manufacturing Makes the Differencecitations
- 2019Examinations on Al-Mg-Sc-Alloys after Additive Manufacturingcitations
Places of action
Organizations | Location | People |
---|
article
Advancements in metal additive manufacturing
Abstract
<p>The high design freedom of laser powder bed fusion (LPBF) additive manufacturing enables new integrated structures, which in turn demand advances in the process conditions and material design to exploit the full potential of this process. A computational multi-scale thermal simulation and metallurgical analysis of the aluminium alloy Scalmalloy® were used to develop and present a specific process window to enable an in-situ heat treatment during LPBF. High resolution analysis and synchrotron experiments on specimens manufactured in this process window revealed a major proportion of nano-sized Al<sub>3</sub>(Sc<sub>x</sub>Zr<sub>1−x</sub>) solute-clusters were already present in the as-built state, as predicted by simulation. Supported by this experimental research, the new processing concept of in-situ heat treatment yielded the highest recorded strength values combined with high ductility directly after LPBF for Scalmalloy®. This advancement in LPBF enables highly complex, thin-walled structures directly made from a high-strength, lightweight material, which is not possible with conventional processes that require a subsequent heat treatment cycle.</p>