Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mair, Philipp

  • Google
  • 4
  • 25
  • 138

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Advancements in metal additive manufacturing10citations
  • 2022Feasibility Study Of Fabricating A Partly Amorphous Copper-Rich Titanium Alloy Via In-Situ Alloying In Laser Powder Bed Fusioncitations
  • 2022Unique microstructure evolution of a novel Ti-modified Al-Cu alloy processed using laser powder bed fusion30citations
  • 2021Laser powder bed fusion of nano-CaB6 decorated 2024 aluminum alloy98citations

Places of action

Chart of shared publication
Letofsky-Papst, Ilse
3 / 17 shared
Palm, F.
1 / 7 shared
Leichtfried, Gerhard J.
1 / 1 shared
Mohebbi, M. S.
1 / 1 shared
Kremmer, T.
1 / 1 shared
Letofsky-Papst, I.
1 / 7 shared
Maier-Kiener, Verena
1 / 24 shared
Schimbäck, David
2 / 8 shared
Kremmer, Thomas
1 / 17 shared
Leichtfried, G.
1 / 17 shared
Montes, I.
1 / 1 shared
Höppel, Heinz Werner
1 / 119 shared
Palm, Frank
1 / 6 shared
Maier-Kiener, V.
1 / 12 shared
Staron, Peter
1 / 44 shared
Pogatscher, Stefan
1 / 61 shared
Kaserer, Lukas
2 / 28 shared
Staron, P.
1 / 56 shared
Leichtfried, Gerhard
3 / 12 shared
Goettgens, Valerie Sue
2 / 5 shared
Mitsche, Stefan
2 / 40 shared
Braun, Jakob
1 / 9 shared
March, Lukas
1 / 1 shared
Weinberger, Nikolaus
1 / 2 shared
Rainer, Tobias
1 / 1 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Letofsky-Papst, Ilse
  • Palm, F.
  • Leichtfried, Gerhard J.
  • Mohebbi, M. S.
  • Kremmer, T.
  • Letofsky-Papst, I.
  • Maier-Kiener, Verena
  • Schimbäck, David
  • Kremmer, Thomas
  • Leichtfried, G.
  • Montes, I.
  • Höppel, Heinz Werner
  • Palm, Frank
  • Maier-Kiener, V.
  • Staron, Peter
  • Pogatscher, Stefan
  • Kaserer, Lukas
  • Staron, P.
  • Leichtfried, Gerhard
  • Goettgens, Valerie Sue
  • Mitsche, Stefan
  • Braun, Jakob
  • March, Lukas
  • Weinberger, Nikolaus
  • Rainer, Tobias
OrganizationsLocationPeople

article

Advancements in metal additive manufacturing

  • Letofsky-Papst, Ilse
  • Palm, F.
  • Leichtfried, Gerhard J.
  • Mohebbi, M. S.
  • Kremmer, T.
  • Letofsky-Papst, I.
  • Maier-Kiener, Verena
  • Schimbäck, David
  • Kremmer, Thomas
  • Leichtfried, G.
  • Montes, I.
  • Höppel, Heinz Werner
  • Palm, Frank
  • Maier-Kiener, V.
  • Mair, Philipp
  • Staron, Peter
  • Pogatscher, Stefan
  • Kaserer, Lukas
  • Staron, P.
Abstract

<p>The high design freedom of laser powder bed fusion (LPBF) additive manufacturing enables new integrated structures, which in turn demand advances in the process conditions and material design to exploit the full potential of this process. A computational multi-scale thermal simulation and metallurgical analysis of the aluminium alloy Scalmalloy® were used to develop and present a specific process window to enable an in-situ heat treatment during LPBF. High resolution analysis and synchrotron experiments on specimens manufactured in this process window revealed a major proportion of nano-sized Al<sub>3</sub>(Sc<sub>x</sub>Zr<sub>1−x</sub>) solute-clusters were already present in the as-built state, as predicted by simulation. Supported by this experimental research, the new processing concept of in-situ heat treatment yielded the highest recorded strength values combined with high ductility directly after LPBF for Scalmalloy®. This advancement in LPBF enables highly complex, thin-walled structures directly made from a high-strength, lightweight material, which is not possible with conventional processes that require a subsequent heat treatment cycle.</p>

Topics
  • impedance spectroscopy
  • cluster
  • experiment
  • simulation
  • aluminium
  • strength
  • aluminium alloy
  • selective laser melting
  • ductility