Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Domakova, Maria

  • Google
  • 1
  • 10
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Influence of process and heat input on the microstructure and mechanical properties in wire arc additive manufacturing of hot work tool steels16citations

Places of action

Chart of shared publication
Orłowska, Marta
1 / 7 shared
Warchomicka, Fernando Gustavo
1 / 15 shared
Fritsche, Sebastian
1 / 8 shared
Buzolin, Ricardo Henrique
1 / 54 shared
Riedlsperger, Florian
1 / 7 shared
Enzinger, Norbert
1 / 96 shared
Domitner, Josef
1 / 41 shared
Pixner, Florian
1 / 19 shared
Čaplovičová, Mária
1 / 5 shared
Lasnik, Michael
1 / 10 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Orłowska, Marta
  • Warchomicka, Fernando Gustavo
  • Fritsche, Sebastian
  • Buzolin, Ricardo Henrique
  • Riedlsperger, Florian
  • Enzinger, Norbert
  • Domitner, Josef
  • Pixner, Florian
  • Čaplovičová, Mária
  • Lasnik, Michael
OrganizationsLocationPeople

article

Influence of process and heat input on the microstructure and mechanical properties in wire arc additive manufacturing of hot work tool steels

  • Orłowska, Marta
  • Warchomicka, Fernando Gustavo
  • Fritsche, Sebastian
  • Buzolin, Ricardo Henrique
  • Riedlsperger, Florian
  • Enzinger, Norbert
  • Domakova, Maria
  • Domitner, Josef
  • Pixner, Florian
  • Čaplovičová, Mária
  • Lasnik, Michael
Abstract

<p>The present study demonstrates the suitability of wire arc additive manufacturing (AM) for hot work tool steel processing. Different arc welding techniques and energy inputs were applied and systematically compared to determine the deposition characteristics, microstructure and mechanical properties. All AM deposits show a sound visual appearance and full density without macroscopic imperfections, i.e. cracking. By adhering to a pre-defined interpass strategy, the cold metal transfer process can be used to achieve higher weld beads with lower dilution and faster build-up rates than the metal active gas process. The microstructure of the AM parts is comparable for all process configurations and consists of an α/α′-matrix with a finely dispersed vermicular and polygonal δ-ferrite network; no notable amount of retained austenite could be measured, but it could be observed by transmission electron microscopy embedded within the laths. Intensive precipitation of multiple molybdenum-based precipitates is observed along the interface matrix to δ-ferrite. In contrast, iron-based precipitates are predominantly found inside and at the boundaries of the laths of the matrix. Similarities are also evident in the mechanical properties, resulting in an average hardness of 380–390 HV1 and absorbed impact energy of 10–12 J at room temperature. High yield strength values of 1000–1100 MPa and ultimate tensile strength of 1200–1400 MPa were obtained. No significant differences in the measured mechanical properties could be noted regarding the specimen orientation, indicating the isotropy of the properties.</p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • molybdenum
  • strength
  • hardness
  • transmission electron microscopy
  • precipitate
  • precipitation
  • iron
  • yield strength
  • tensile strength
  • wire
  • additive manufacturing
  • hot-work steel