Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ferraz, Franz Miller Branco

  • Google
  • 8
  • 17
  • 48

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024A comprehensive mean-field approach to simulate the microstructure during the hot forming of Ti-173citations
  • 2024A predictive mesoscale model for continuous dynamic recrystallization9citations
  • 2023Microstructure refinement of a cast high entropy alloy by thermomechanical treatments9citations
  • 2023Thermomechanical treatments for a dual phase cast high entropy alloy3citations
  • 2023Metamodelling the hot deformation behaviour of titanium alloys using a mean-field approach3citations
  • 2023Hot deformation mechanisms of dual phase high entropy alloys3citations
  • 2020Improved Predictability of Microstructure Evolution during Hot Deformation of Titanium Alloys18citations
  • 2020Characterization and modelling the flow localization in titanium alloys during hot formingcitations

Places of action

Chart of shared publication
Shahryari, Esmaeil
1 / 1 shared
Krumphals, Alfred
4 / 12 shared
Maßwohl, Markus
1 / 1 shared
Buzolin, Ricardo Henrique
8 / 54 shared
Poletti, Maria Cecilia
8 / 79 shared
Ebenbauer, Stefan
1 / 4 shared
Leitner, Thomas
1 / 6 shared
Dudziak, Tomasz
3 / 26 shared
Chrzan, Konrad
3 / 3 shared
Masswohl, Markus
3 / 3 shared
Wang, Peng
2 / 18 shared
Macioł, Piotr
1 / 1 shared
Effertz, Pedro Dos Santos
1 / 1 shared
Szeliga, Danuta
1 / 2 shared
Carazo, Fernando
1 / 1 shared
Sztangret, Łukasz
1 / 1 shared
Lasnik, Michael
1 / 10 shared
Chart of publication period
2024
2023
2020

Co-Authors (by relevance)

  • Shahryari, Esmaeil
  • Krumphals, Alfred
  • Maßwohl, Markus
  • Buzolin, Ricardo Henrique
  • Poletti, Maria Cecilia
  • Ebenbauer, Stefan
  • Leitner, Thomas
  • Dudziak, Tomasz
  • Chrzan, Konrad
  • Masswohl, Markus
  • Wang, Peng
  • Macioł, Piotr
  • Effertz, Pedro Dos Santos
  • Szeliga, Danuta
  • Carazo, Fernando
  • Sztangret, Łukasz
  • Lasnik, Michael
OrganizationsLocationPeople

article

Microstructure refinement of a cast high entropy alloy by thermomechanical treatments

  • Dudziak, Tomasz
  • Buzolin, Ricardo Henrique
  • Chrzan, Konrad
  • Poletti, Maria Cecilia
  • Ferraz, Franz Miller Branco
  • Masswohl, Markus
Abstract

<p>This work investigates the hot compressive behaviour of a cast high entropy alloy. The alloy is subjected to four different thermomechanical treatments to refine the as-cast microstructure: hot compression tests at constant strain rates (0.001s<sup>−1</sup> and 1s<sup>−1</sup>), hot compression tests with strain rate jumps (between 0.001s<sup>−1</sup> and 1s<sup>−1</sup>), multi-stage hot deformation with holding intervals of 1 and 5 min, and hot compression at 0.1s<sup>−1</sup> followed by annealing. The three first tests were carried out at 1100 °C and the deformation step of the last type was carried out at 1050 °C followed by annealing at 1150 °C. The deformation at 0.001s<sup>−1</sup> promotes dynamic recrystallisation. Dynamic recrystallisation occurs when jumping from 1s<sup>−1</sup> to 0.001s<sup>−1</sup> and does not occur if the jump is from 0.001s<sup>−1</sup> to 1s<sup>−1</sup>. Multi-stage interrupted tests show that 1 min holding between the stages promote dynamic recrystallisation, while static recrystallisation occurs more pronouncedly for 5 min inter-stage holding. Due to the large initial grain size, deformation does not occur homogeneously within the grains, and heterogeneous static recrystallisation occurs within the deformed specimen. Whether the alloy is solution heat treated or deformed in the as-cast condition does not affect the recrystallisation behaviour. Overall, refining the coarse cast microstructure of the investigated alloy is possible, although more deformation steps are needed to produce a homogeneous microstructure.</p>

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • compression test
  • annealing