People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmed, Shahroz
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Effect of Cooling Practice on the Mechanical Properties of Medium-Manganese Aluminum-Alloyed Steels after Intercritical Annealing Quench and Partition Treatmentcitations
- 2023The effect of scrap originating trace elements on the properties of low alloyed steelscitations
- 2023Effects of strain rate and adiabatic heating on mechanical behavior of medium manganese Q&P steelscitations
- 2022Quenching and partitioning response of vanadium microalloyed TRIP-assisted steel
- 2022Occurrence of dynamic strain aging in intercritically annealed low carbon high aluminum medium manganese steelscitations
- 2022Directed energy deposition of AA7075 - effect of TiC nanoparticles on microstructurecitations
- 2022Directed energy deposition of AA7075 - effect of TiC nanoparticles on microstructurecitations
- 2022Dynamic strain aging in multiphase steels
- 2020Processing map for controlling microstructure and unraveling various deformation mechanisms during hot working of CoCrFeMnNi high entropy alloycitations
- 2019Hardfaced wear resistant coatings for mining tools
Places of action
Organizations | Location | People |
---|
article
Effects of strain rate and adiabatic heating on mechanical behavior of medium manganese Q&P steels
Abstract
In this work, the mechanical behavior and properties of four different multiphase steels was studied in tension at strain rates of 10−4, 10−2, 0.5 and 800 s−1. The four materials include a medium manganese (3%) steel grade overcritically and intercritically annealed and Q&P heat treated and two industrially produced TRIP-assisted steels, DH800 and TRIP700 steels, which have different retained austenite morphology. The temperature and strain of the specimens were studied using high speed infrared thermography (IRT) and digital image correlation (DIC). The mechanical response of the Q&P steels had considerably higher tensile strength than the two industrially produced steels. The Q&P steel with a higher austenite volume fraction strain hardened significantly more than the other steels. The DH800 steel and the intercritically annealed Q&P steel heated less with ΔT of 25 °C during uniform deformation than the TRIP700 steel and the overcritically annealed Q&P steel with ΔT of 35 °C. However, the industrially produced steels DH800 and TRIP700 had higher uniform elongation of 0.12 mm/mm and 0.14 mm/mm whereas the Q&P steels reached only 0.09 mm/mm, meaning that the heating rate of the Q&P steels was considerably steeper. In addition, the stronger necking of the DH800 and TRIP700 steels led to much higher maximum temperatures before failure (max. 260 °C) than those observed for the Q&P steels (max. 140 °C). The Taylor-Quinney coefficients of the Q&P steels were large in the beginning of the plastic deformation (0.65–0.95) but decreased as a function of plastic deformation, whereas the Taylor–Quinney Coefficients of the DH800 and TRIP700 steels were lower (0.5–0.6) but increased gradually as a function of plastic deformation. ; Peer reviewed