Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Papenberg, Nikolaus P.

  • Google
  • 2
  • 6
  • 94

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Closed die forging of a Mg-Al-Ca-Mn-Zn lean alloy7citations
  • 2020Mg-alloys for forging applications-A review87citations

Places of action

Chart of shared publication
Pogatscher, Stefan
2 / 61 shared
Trink, Bernhard
1 / 4 shared
Arnoldt, Aurel
1 / 6 shared
Uggowitzer, Peter J.
2 / 62 shared
Gneiger, Stefan
1 / 14 shared
Weißensteiner, Irmgard
1 / 15 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Pogatscher, Stefan
  • Trink, Bernhard
  • Arnoldt, Aurel
  • Uggowitzer, Peter J.
  • Gneiger, Stefan
  • Weißensteiner, Irmgard
OrganizationsLocationPeople

article

Closed die forging of a Mg-Al-Ca-Mn-Zn lean alloy

  • Pogatscher, Stefan
  • Papenberg, Nikolaus P.
  • Trink, Bernhard
  • Arnoldt, Aurel
  • Uggowitzer, Peter J.
Abstract

The intensifying search for light weighting possibilities in transportation have repeatedly brought attention on wrought Mg alloys. While various alloys have been investigated a trend in development towards heat treatable Mg alloys with low alloying content has been noticeable. Investigations on wrought alloys are done predominantly by extrusion or rolling, but not by forging. As forgings are an indispensable part in structural components used today, it is important to gain an in depth understanding of the interaction between material, forming process and heat treatments of forged parts.<br/><br/>In this study, the forging process of a piston rod using an age-hardenable lean Mg alloy AXMZ1000 is investigated on a semi-industrial scale, comparing two different stock materials: cast and homogenized versus extruded forging material. The microstructural evolution and mechanical properties during the production process are analyzed and assessed. Comparable microstructures are obtained with both starting materials. The mechanical properties achieved are slightly better with extruded feedstock than with the cast counterpart, but are at a satisfactory level comparable to extruded or rolled components made of similar alloys.

Topics
  • impedance spectroscopy
  • microstructure
  • extrusion
  • forging