People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmadi, Masoud
ASML (Netherlands)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Analytical modelling of the electrical conductivity of CNT-filled polymer nanocompositescitations
- 2024Modelling piezoresistive behaviour in finitely deformed elastomeric composites
- 2022Outstanding cracking resistance in Mg-alloyed zinc coatings achieved via crystallographic texture controlcitations
- 2022The effect of grain refinement on the deformation and cracking resistance in Zn–Al–Mg coatingscitations
- 2021Cracking behavior and formability of Zn-Al-Mg coatingscitations
- 2021Cracking behavior and formability of Zn-Al-Mg coatings:Understanding the influence of steel substratescitations
- 2020Genesis and mechanism of microstructural scale deformation and cracking in ZnAlMg coatingscitations
- 2019Microstructure and adhesion strength quantification of PVD bi-layered ZnMg-Zn coatings on DP800 steelcitations
Places of action
Organizations | Location | People |
---|
article
The effect of grain refinement on the deformation and cracking resistance in Zn–Al–Mg coatings
Abstract
The present study is dedicated to explore the effect of grain refinement on cracking resistance of hot-dip galvanized Zn–Al–Mg coatings on steel substrate. In this work, we demonstrate the enhancement of plastic deformation and cracking resistance by refining the microstructure (primary zinc grains) of the Zn–Al–Mg coatings. For this purpose, two types of Zn–Al–Mg coatings namely, fine grained and coarse grained microstructures are investigated utilizing in-situ scanning electron microscopy tensile tests. Electron backscatter diffraction technique is used to illuminate the deformation behavior at the scale of grains (and/or within grains). The results reveal that the coating with fine grained microstructure possesses higher ductility and cracking resistance, whereas the coating with coarse grain microstructure induces more transgranular cracking during deformation. Moreover, primary zinc grain refinement has been shown to decrease the fraction of coarse deformation twins that serve as undesirable sites of micro-cracking. In particular, both deformation mechanisms and cracking behavior are found to be grain size-dependent in these coatings.