People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ma, Yan
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Green Ironmaking at Higher H2 Pressure: Reduction Kinetics and Microstructure Formation During Hydrogen-Based Direct Reduction of Hematite Pelletscitations
- 2024Circular Steel for Fast Decarbonization: Thermodynamics, Kinetics, and Microstructure Behind Upcycling Scrap into High-Performance Sheet Steelcitations
- 2023Phase Transition of Magnetite Ore Fines During Oxidation Probed by In Situ High-Temperature X-Ray Diffractioncitations
- 2023Reducing Iron Oxide with Ammonia: A Sustainable Path to Green Steelcitations
- 2023Segregation-enhanced grain boundary embrittlement of recrystallised tungsten evidenced by site-specific microcantilever fracturecitations
- 2022Hydrogen-based direct reduction of iron oxide at 700°C: Heterogeneity at pellet and microstructure scalescitations
- 2022Phase transformations and microstructure evolution during combustion of iron powdercitations
- 2022Thermodynamics-guided alloy and process design for additive manufacturingcitations
- 2022Hierarchical nature of hydrogen-based direct reduction of iron oxidescitations
- 2021Mechanism-controlled thermomechanical treatment of high manganese steelscitations
- 2020Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steelscitations
- 2019Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interfacecitations
- 2019Influence of Microstructural Morphology on Hydrogen Embrittlement in a Medium-Mn Steel Fe-12Mn-3Al-0.05Ccitations
- 2018Strain Aging Behavior of an Austenitic High-Mn Steelcitations
Places of action
Organizations | Location | People |
---|
article
Mechanism-controlled thermomechanical treatment of high manganese steels
Abstract
Austenitic high manganese steels exhibit outstanding mechanical properties, such as high energy absorption, owing to various deformation-mechanisms such as dislocation slip, twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP). Here, we show a novel thermomechanical treatment to manufacture a high manganese steel Fe–18Mn-0.3C (wt.-%) with excellent mechanical performance by combining these three deformation-mechanisms. This process of mechanism-controlled rolling resulted in ultra-high tensile strength of the high manganese steel up to 1.6 GPa, simultaneously with uniform elongations up to 15%.A thermomechanical process was developed to establish this combination of properties. Warm rolling was conducted at 200 °C, to suppress TRIP and activate TWIP as deformation mechanism. Thus, a high density of deformation twins and dislocations was introduced to the microstructure, avoiding martensite formation. During a subsequent recovery annealing at 520 °C or 550 °C, the dislocation density was reduced, yet the high density of deformation twins was preserved. The combination of warm rolling and recovery annealing resulted in an ultrafine microstructure with a high density of twins and moderate density of dislocations. The TRIP effect is predominant during plastic deformation at ambient conditions in the highly twinned microstructure. The resulting steel exhibits an ultra-high yield strength and sufficient ductility, favorable properties for lightweight construction in automotive or aerospace industry.