People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duchoň, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Advantages of rapid solidification over casting of Mg-0.4Zn-1Y alloycitations
- 2023A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attackcitations
- 2022The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusioncitations
- 2021Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressingcitations
Places of action
Organizations | Location | People |
---|
article
Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing
Abstract
In this study, we prepared a Zn-0.8Mg-0.2Sr (wt. %) alloy and processed it by ECAP. The evolution of the microstructure during the processing was observed and discussed in detail. The obtained results revealed the continuous dynamic recrystallization as the prevailing recrystallization mechanism. It affected all the aspects of the microstructure, namely the grain size, residual stresses, and dislocation arrangement. The obtained grain size was in good agreement with both empirical and theoretical relations predicting the minimal (0.4–0.6 μm) and average (2.5 μm) grain size. The compressive tests revealed the relations between alignment of the intermetallic regions, texture of the Zn matrix, and resulting mechanical performance of the material. The compressive yield strength of the material ranged from 230 to 250 MPa in the individual directions, and the tensile yield strength reached the value of approximately 200 MPa. The resulting mechanical properties were almost isotropic in the individual directions and fulfilled the basic requirements for applications in implantology, particularly, for maxillofacial, cranial or orthopaedic implants. © 2021 Elsevier B.V.