People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pinc, Jan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniquescitations
- 2024Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniquescitations
- 2023Nanograined Zinc Alloys with Improved Mechanical Properties Prepared by Powder Metallurgy
- 2023A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attackcitations
- 2023Suppression of mechanical instability in bioabsorbable ultrafine-grained Zn through in-situ stabilization by ZnO nanodispersoidscitations
- 2022Microstructural and Mechanical Characterization of Newly Developed Zn-Mg-CaO Compositecitations
- 2022The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusioncitations
- 2022The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusioncitations
- 2022Ultrafine-Grained Zn-Mg-Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sinteringcitations
- 2022Advanced Zinc–Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sinteringcitations
- 2021Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable materialcitations
- 2021Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressingcitations
- 2021Influence of Ceramic Particles Character on Resulted Properties of Zinc-Hydroxyapatite/Monetite Compositescitations
- 2021Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloyscitations
- 2020Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy – The influence of extrusion parameters on microstructure and mechanical characteristicscitations
- 2020Characterization of a Zn‐Ca5(PO4)3(OH) composite with a high content of the hydroxyapatite particles prepared by the spark plasma sintering processcitations
Places of action
Organizations | Location | People |
---|
article
Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing
Abstract
In this study, we prepared a Zn-0.8Mg-0.2Sr (wt. %) alloy and processed it by ECAP. The evolution of the microstructure during the processing was observed and discussed in detail. The obtained results revealed the continuous dynamic recrystallization as the prevailing recrystallization mechanism. It affected all the aspects of the microstructure, namely the grain size, residual stresses, and dislocation arrangement. The obtained grain size was in good agreement with both empirical and theoretical relations predicting the minimal (0.4–0.6 μm) and average (2.5 μm) grain size. The compressive tests revealed the relations between alignment of the intermetallic regions, texture of the Zn matrix, and resulting mechanical performance of the material. The compressive yield strength of the material ranged from 230 to 250 MPa in the individual directions, and the tensile yield strength reached the value of approximately 200 MPa. The resulting mechanical properties were almost isotropic in the individual directions and fulfilled the basic requirements for applications in implantology, particularly, for maxillofacial, cranial or orthopaedic implants. © 2021 Elsevier B.V.