People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Davis, Alec E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Achieving a columnar-to-equiaxed transition through dendrite twinning in high deposition rate additively manufactured titanium alloyscitations
- 2024Grain-scale in-situ study of discontinuous precipitation in Mg-Alcitations
- 2024Understanding fatigue crack propagation pathways in Additively Manufactured AlSi10Mgcitations
- 2024In-Situ EBSD Study of Austenitisation in a Wire-Arc Additively Manufactured High-Strength Steelcitations
- 2024Identification, classification and characterisation of hydrides in Zr alloyscitations
- 2023β grain refinement during solidification of Ti-6Al-4V in Wire-Arc Additive Manufacturing (WAAM)citations
- 2022β Grain refinement by yttrium addition in Ti-6Al-4V Wire-Arc Additive Manufacturingcitations
- 2022Comparison of microstructure refinement in wire-arc additively manufactured Ti–6Al–2Sn–4Zr–2Mo–0.1Si and Ti–6Al–4V built with inter-pass deformationcitations
- 2022Microstructural characterisation and mechanical properties of Ti-5Al-5V-5Mo-3Cr built by wire and arc additive manufacturecitations
- 2022Optimising large-area crystal orientation mapping of nanoscale β phase in α + β titanium alloys using EBSDcitations
- 2022CALPHAD-informed phase-field model for two-sublattice phases based on chemical potentials: η-phase precipitation in Al-Zn-Mg-Cu alloyscitations
- 2021β Grain refinement by yttrium addition in Ti-6Al-4V Wire-Arc Additive Manufacturingcitations
- 2021The potential for grain refinement of wire-arc additive manufactured (WAAM) Ti-6Al-4V by ZrN and TiN inoculationcitations
- 2021Effect of deposition strategies on fatigue crack growth behaviour of wire+ arc additive manufactured titanium alloy Ti-6Al-4Vcitations
- 2021Preageing of Magnesium Alloyscitations
- 2021In-Situ Observation of Single Variant α Colony Formation in Ti-6Al-4Vcitations
- 2021The Potential for Grain Refinement of Wire-Arc Additive Manufactured (WAAM) Ti-6Al-4V by ZrN and TiN Inoculationcitations
- 2021Microstructure transition gradients in titanium dissimilar alloy (Ti-5Al-5V-5Mo-3Cr/Ti-6Al-4V) tailored wire-arc additively manufactured componentscitations
- 2020The effect of processing parameters on rapid-heating β recrystallization in inter-pass deformed Ti-6Al-4V wire-arc additive manufacturingcitations
- 2020On the observation of annealing twins during simulating β-grain refinement in Ti–6Al–4V high deposition rate AM with in-process deformationcitations
- 2019Reducing yield asymmetry and anisotropy in wrought magnesium alloys – a comparative studycitations
- 2019Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacturecitations
- 2019Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacturecitations
- 2019Automated Image Mapping and Quantification of Microstructure Heterogeneity in Additive Manufactured Ti6Al4Vcitations
Places of action
Organizations | Location | People |
---|
article
Preageing of Magnesium Alloys
Abstract
Certain magnesium alloy systems can obtain superior mechanical strength through age hardening. However, conventional ageing heat treatments for these alloys are rarely more complex than a single isothermal hold – especially when compared to those of aluminium alloys – so age hardenable magnesium alloys may not be achieving their full strengthening potential. The use of preageing, where a lower temperature heat treatment is utilised before a hotter secondary ageing step, has proven successful in boosting the strength of magnesium alloys previously, but these trials are few in number, and the testing conditions are limited. In this work, a wide range of preageing temperatures and times were trialled on commercial and experimental magnesium alloys to determine the effectiveness of the strengthening technique. The results showed that preageing can produce a significant boost in hardness, can reduce total ageing times, and can provide a degree of mechanical property customisation through control of precipitate habit plane and morphology. However, the effectiveness of the technique is alloy-system dependent, where the fundamental precipitate nucleation and phase evolution is a key contributor to the success of preageing; as is the energy barrier to nucleation in an alloy system, whether that be controlled by alloy chemistry or thermomechanical processing. The results are discussed in the context of alloy design and industrial processing.