People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chaudhuri, Somsubhro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024A hybrid probabilistic-deterministic framework for prediction of characteristic size of corrosion pits in low-carbon steel following long-term seawater exposurecitations
- 2024Experimental evaluation of the short and long fatigue crack growth rate of S355 structural steel offshore monopile weldments in air and synthetic seawatercitations
- 2024Fatigue damage detection using Lock-In Thermography
- 2023Thermometric investigation of fatigue crack initiation from corrosion pits in structural steel used in offshore wind turbines
- 2023Quantitative analysis of the correlation between geometric parameters of pits and stress concentration factors for a plate subject to uniaxial tensile stresscitations
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2023Smart S-N curve for fatigue lifetime predictions of offshore wind turbine support structures affected by corrosion
- 2023Smart S-N curve for fatigue lifetime predictions of offshore wind turbine support structures affected by corrosion
- 2023Evaluation of the corrosion pit growth rate in structural steel S355 by phase-field modelling
- 2023Evaluation of the corrosion pit growth rate in structural steel S355 by phase-field modelling
- 2023A numerical study on tensile stress concentration in semi-ellipsoidal corrosion pitscitations
- 2022Numerical study on the effect of pitting corrosion on the fatigue strength degradation of offshore wind turbine substructures using a short crack model
- 2022Numerical study on the effect of pitting corrosion on the fatigue strength degradation of offshore wind turbine substructures using a short crack model
- 2022A numerical investigation on the pitting corrosion in offshore wind turbine substructures
- 2022Calibration and validation of extended back-face strain compliance for a wide range of crack lengths in SENB-4P specimenscitations
- 2022Calibration and validation of extended back-face strain compliance for a wide range of crack lengths in SENB-4P specimenscitations
- 2022A numerical investigation on the pitting corrosion in offshore wind turbine substructures
- 2022Fatigue strength degradation of structural steel in sea environment due to pitting corrosion
- 2022Pitting corrosion and its transition to crack in offshore wind turbine supporting structures
- 2022Pitting Corrosion and Its Transition to Crack in Offshore Wind Turbine Supporting Structures
- 2022Test methods for corrosion-fatigue of offshore structures
- 2022Test methods for corrosion-fatigue of offshore structures
- 2021Data rich imaging approaches assessing fatigue crack initiation and early propagation in a DS superalloy at room temperaturecitations
- 2020Magnetic properties of silicon steel after plastic deformationcitations
- 2019The development of high-resolution crack monitoring methods to investigate the effect of the local weld toe geometry on fatigue crack initiation life
- 2019High-resolution 3D weld toe stress analysis and ACPD method for weld toe fatigue crack initiationcitations
Places of action
Organizations | Location | People |
---|
article
Data rich imaging approaches assessing fatigue crack initiation and early propagation in a DS superalloy at room temperature
Abstract
Crack initiation and early propagation behavior of the directionally solidified (DS) superalloy CM247LC has been assessed by data rich imaging approaches. These include conventional characterization methods such as replica record analysis, 3D optical surface imaging, optical and scanning electron microscopy (SEM) as well as more recent techniques like digital image correlation (DIC) and synchrotron radiation computed tomography (SRCT). Three modes of secondary crack behaviors were found during evaluation of the fatigue process. The early stages<br/>of fatigue damage were controlled by microstructure-induced cracking, mainly consisting of carbide cracking. Fatigue damage was then promoted via slip band cracking and opening mode controlled carbide-cracking. The mechanisms of these different cracking behaviors are associated with the plastic zone of the main crack tip. Even though the early localized strain levels were of the same intensity within slip bands and at the intersection siteswith carbides, carbide-induced cracking occurred prior to slip band cracking, characterized by SEM-DIC. This indicated that carbide-induced cracking was more likely to occur in the early stages of the fatigue process. Early crack growth behaviors were further investigated in situ at the microstructural scale via SRCT. The effect of<br/>carbides on crack initiation and propagation processes were evaluated in 3D. This revealed the phenomenonaround pores, that cracks simultaneously grew on different slip planes in 3D, contrary to previous theories that<br/>such cracks tend to grow on a single favourable slip plane (in polycrystalline alloys). The SRCT result demonstrates the importance and necessity of 3D characterization of the crack propagation behavior at sub-surface,<br/>which is not fully analyzed by 2D characterization.