People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luca, Anthony De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Microstructure and defects in a Ni-Cr-Al-Ti γ/γ’ model superalloy processed by laser powder bed fusioncitations
- 2021Influence of Hf on the heat treatment response of additively manufactured Ni-base superalloy CM247LCcitations
- 2021Individual and synergistic effects of Mn and Mo micro-additions on precipitation and strengthening of a dilute Al–Zr-Sc-Er-Si alloycitations
- 2020Effect of microadditions of Mn and Mo on dual L12- and α-precipitation in a dilute Al-Zr-Sc-Er-Si alloycitations
Places of action
Organizations | Location | People |
---|
article
Individual and synergistic effects of Mn and Mo micro-additions on precipitation and strengthening of a dilute Al–Zr-Sc-Er-Si alloy
Abstract
ilute Al–Er-Sc-Zr-Si alloys strengthened by coherent Al3(Er,Sc,Zr)(L12) nanoprecipitates have excellent coarsening- and creep-resistance up to 400 °C. Herein, the effects of micro-additions of 0.25 at.% Mn and/or 0.10 at.% Mo to a dilute Al-0.08Zr-0.014Sc-0.008Er-0.09Si (at.%) alloy are investigated with respect to precipitate evolution and the resulting strengths after different aging treatments. Both Mn and Mo provide solid-solution strengthening, contributing to ambient-temperature strength, in addition to elevated-temperature creep resistance. L12-core-shell nanoprecipitates created upon aging at 400 °C exhibit Mn partitioning at the Sc- and Er-rich precipitate cores, and Mo throughout the precipitates. Manganese-modified L12-precipitates exhibit a higher number density (~7.5 × 1022 m−3 for peak-aged condition), while Mo-modified L12-nanoprecipitates display significantly improved coarsening-resistance. No notable synergistic effect of Mn and Mo additions strengthening upon isothermal aging at 400 °C are observed. Isochronal aging displays, however, that a Mo addition delays the formation of Al/Si/Mn-rich α-precipitates from 425 °C to 475 °C. Both Mn and Mo additions improve the creep resistance of the alloys at 300 °C. Manganese-bearing alloys exhibit a more significant effect, as it doubles the threshold stress compared to the Mn-free base alloy. This strong effect could be a result of fine α-precipitates (