People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Winter, Sven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Numerical and experimental study of high-speed blanking of DC06 steelcitations
- 2023Influence of surface pressure and tool materials on contact heating of aluminum
- 2022Punching of Ultra-High-Strength Spring Strips: Evolution of Cutting Edge Radius up to 1,000,000 Strokes for Three Punch Materialscitations
- 2022Punching of Ultra-High-Strength Spring Strips: Evolution of Cutting Edge Radius up to 1,000,000 Strokes for Three Punch Materialscitations
- 2022Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigationscitations
- 2021Effect of sample geometry on the macroscopic shear deformation of the titanium alloy Ti-10V-2Fe-3Al subjected to quasi-static and dynamic compression-shear loadingcitations
- 2021Adiabatic Blanking: Influence of Clearance, Impact Energy, and Velocity on the Blanked Surfacecitations
- 2021Processing Q&P steels by hot-metal gas forming: Influence of local cooling rates on the properties and microstructure of a 3rd generation AHSScitations
- 2021Analyzing the influence of a deep cryogenic treatment on the mechanical properties of blanking tools by using the short-time method PhyBaLCHTcitations
- 2021Experimental and Numerical Investigations into Magnetic Pulse Welding of Aluminum Alloy 6016 to Hardened Steel 22MnB5citations
- 2021Erprobung anwendungsadaptierter CVD-Diamantschichten beim Stanzencitations
- 2020Adiabatic blanking of advanced high-strength steelscitations
- 2020On the evolution of adiabatic shear bands in the beta titanium alloy Ti-10V-2Fe-3Al
- 2020Determination of Material and Failure Characteristics for High-Speed Forming via High-Speed Testing and Inverse Numerical Simulationcitations
- 2020Equal-channel angular pressing influencing the mean stress sensitivity in the high cycle fatigue regime of the 6082 aluminum alloycitations
- 2020Process Development for a Superplastic Hot Tube Gas Forming Process of Titanium (Ti-3Al-2.5V) Hollow Profilescitations
- 2020Process Development for a Superplastic Hot Tube Gas Forming Process of Titanium (Ti-3Al-2.5V) Hollow Profilescitations
- 2019Finite element simulations on the relation of microstructural characteristics and the formation of different types of adiabatic shear bands in a v-titanium alloy ; Finite-Elemente-Simulationen über die Zusammenhänge von mikrostrukturellen Eigenschaften und die Ausbildung verschiedener Arten von adiabatischen Scherbänden in einer v-Titanlegierungcitations
- 2017High temperature and dynamic testing of AHSS for an analytical description of the adiabatic cutting processcitations
Places of action
Organizations | Location | People |
---|
article
Equal-channel angular pressing influencing the mean stress sensitivity in the high cycle fatigue regime of the 6082 aluminum alloy
Abstract
Art. 140014 ; The high cycle fatigue (HCF) behavior is investigated for a 6082 aluminum alloy in an as-extruded peak-aged condition and after single-pass equal-channel angular pressing (ECAP). The focus of this study is on the effect, that ECAP processing exerts on the mean stress sensitivity of the fatigue strength. The fatigue strength at 107 cycles is compared for alternating tension-compression (R = -1), tension (R = 0) and tension-tension loading (R = 0.1) and related to the microstructural features examined by electron backscatter diffraction (EBSD) measurements and the mechanical properties determined by quasi-static tensile and compression tests. For the as-extruded peak-aged alloy, the fatigue strength depends on the stress ratio. An increase in mean stress due to a higher applied stress ratio leads to decreased fatigue strength. Single-pass ECAP enhances the fatigue strength for all stress ratios when compared to the as-extruded peak-aged alloy. Furthermore, the mean stress effect is diminished and the fatigue strength is almost the same for the tested stress ratios. The mean stress insensitive behavior of the ECAP processed condition is most likely a result of an increased sensitivity to compression loading, which is caused by the ECAP induced shear-deformation and expresses further in a minor yield strength under compression loading when compared to the as-extruded peak-aged alloy. ; 795