People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Panwisawas, Chinnapat
Queen Mary University of London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Pore evolution mechanisms during directed energy deposition additive manufacturingcitations
- 2024Pore evolution mechanisms during directed energy deposition additive manufacturing
- 2023Multi-length-scale study on the heat treatment response to supersaturated nickel-based superalloyscitations
- 2022Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusioncitations
- 2021Ultra-high temperature deformation in a single crystal superalloycitations
- 2021High Entropy Alloys as Filler Metals for Joiningcitations
- 2020Relating micro-segregation to site specific high temperature deformation in single crystal nickel-base superalloy castingscitations
- 2018Mean-field modelling of the intermetallic precipitate phases during heat treatment and additive manufacture of Inconel 718citations
- 2018History dependence of the microstructure on time-dependent deformation during in-situ cooling of a nickel-based single crystal superalloycitations
- 2018A computational study on the three-dimensional printability of precipitate-strengthened nickel-based superalloyscitations
- 2017The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloycitations
- 2017Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloyscitations
- 2017Mesoscale modelling of selective laser meltingcitations
- 2016Porosity formation in laser welded Ti-6Al-4V Alloy: modelling and validation
- 2016Linking a CFD and FE analysis for Welding Simulations in Ti-6Al-4V
- 2016Linking a CFD and FE analysis for Welding Simulations in Ti-6Al-4V
- 2016An integrated modelling approach for predicting process maps of residual stress and distortion in a laser weldcitations
- 2015On the role of thermal fluid dynamics into the evolution of porosity during selective laser meltingcitations
- 2015On the role of melt flow into the surface structure and porosity development during selective laser meltingcitations
- 2013Modelling and prediction of recrystallisation in single crystal superalloys
- 2012Prediction of plastic strain for recrystallisation during investment casting of single crystal superalloyscitations
- 2011Numerical modelling of stress and strain evolution during solidification of a single crystal superalloycitations
Places of action
Organizations | Location | People |
---|
article
Relating micro-segregation to site specific high temperature deformation in single crystal nickel-base superalloy castings
Abstract
<p>Thermo-mechanical deformation of the solid on cooling following solidification has been studied quantitatively in a Ni-base single crystal superalloy, CMSX-4 used in turbine blade applications. In the as-cast state, the alloy has location specific properties due to micro-segregation of alloying elements during solidification; this effect become increasingly important with smaller specimen cross-section in thermo-mechanical tests. Accordingly, normalised resistance/resistivity tests have been used to classify samples with varying micro-segregation, given the different γ and γ′ phase resistivities. Increased normalised resistance corresponds to increased local solvus temperature, which determines the plastic strain and stress evolution during cooling. Upon cooling from above the γ′ solvus temperature, dislocation creep occurs within the γ phase accompanied by a small increase in stress. A critical precipitation γ′ volume fraction is reached as the material cools, leading to precipitation hardening as measured by a dramatic resistance change and thereby stress increase at lower temperatures. Short-term creep tests capturing the history-dependent deformation, as demonstrated by controlled cooling experiments, gives steady-state creep, enabling parameter measurement for a Norton-type constitutive equation in a given temperature range. Implications of these results to modelling of plastic strain and stress during cooling from close to solvus temperature during casting has been discussed.</p>