Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bäckström, Mikael

  • Google
  • 2
  • 6
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Compositionally-tailored steel-based materials manufactured by electron beam melting using blended pre-alloyed powders27citations
  • 2020Unique material composition obtained by electron beam melting of blended powderscitations

Places of action

Chart of shared publication
Jiménez-Piqué, Emilio
1 / 14 shared
Koptyug, Andrey
2 / 14 shared
Katz-Demyanetz, Alexander
1 / 14 shared
Rännar, Lars Erik
2 / 2 shared
Vega, Carlos Alberto Botero
1 / 1 shared
Botero, Carlos
1 / 5 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Jiménez-Piqué, Emilio
  • Koptyug, Andrey
  • Katz-Demyanetz, Alexander
  • Rännar, Lars Erik
  • Vega, Carlos Alberto Botero
  • Botero, Carlos
OrganizationsLocationPeople

article

Compositionally-tailored steel-based materials manufactured by electron beam melting using blended pre-alloyed powders

  • Jiménez-Piqué, Emilio
  • Koptyug, Andrey
  • Katz-Demyanetz, Alexander
  • Rännar, Lars Erik
  • Vega, Carlos Alberto Botero
  • Bäckström, Mikael
Abstract

<p>The paper presents the prospects of additive manufacturing (AM) in metal, using the powder bed fusion (PBF) method Electron Beam Melting (EBM) in fabrication specific steel-based alloys for different applications. The proposed approach includes manufacturing of metals from blended pre-alloyed powders for achieving in situ alloying and the material microstructure tailoring by controlling electron beam energy deposition rate EBM tests were conducted with the blends of 316L stainless steel and Colferoloys 103 and 139, corrosion- and abrasion-resistant iron based materials commonly used for plasma spray coating. Thorough microstructure analysis of the manufactured sample was carried out using electron microscopy and measurements of microhardness and elastic modulus was carried out using nanoindentation. It is concluded that implementation of blended powder pathway in PBF AM allows to widen the scope of available materials through diminishing the dependence on the availability of pre-alloyed powders. Together with beam energy steering this pathway also allows for an effective sample microstructure control at different dimensional scales, resulting in components with unique properties. Therefore, the implementation of ‘blended powder pathway’ in PBF AM provides a possibility of manufacturing components with the composite-like and homogeneous zones allowing for the microstructure control and effectively adding a “4th dimension” to “3D printing".</p>

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • stainless steel
  • corrosion
  • composite
  • nanoindentation
  • electron microscopy
  • iron
  • electron beam melting
  • spray coating