People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Syed, Abdul Khadar
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Defect tolerance and fatigue limit prediction for laser powder bed fusion Ti6Al4Vcitations
- 2023Fatigue crack growth behavior in an aluminum alloy Al–Mg–0.3Sc produced by wire based directed energy deposition processcitations
- 2023Strain controlled fatigue behaviour of a wire + arc additive manufactured Ti-6Al-4Vcitations
- 2022Cyclic plasticity and damage mechanisms of Ti-6Al-4V processed by electron beam meltingcitations
- 2021Effect of deposition strategies on fatigue crack growth behaviour of wire+ arc additive manufactured titanium alloy Ti-6Al-4Vcitations
- 2021Influence of deposition strategies on tensile and fatigue properties in a wire + arc additive manufactured Ti-6Al-4Vcitations
- 2021Effect of deposition strategies on fatigue crack growth behaviour of wire + arc additive manufactured titanium alloy Ti–6Al–4Vcitations
- 2020High cycle fatigue and fatigue crack growth rate in additive manufactured titanium alloyscitations
- 2020The role of microstructure and local crystallographic orientation near porosity defects on the high cycle fatigue life of an additive manufactured Ti-6Al-4Vcitations
- 2019Microstructure and mechanical properties of as-built and heat-treated electron beam melted Ti–6Al–4Vcitations
- 2019A critical evaluation of the microstructural gradient along the build direction in electron beam melted Ti-6Al-4V alloycitations
- 2019Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloycitations
- 2019High cycle fatigue and fatigue crack growth rate in additive manufactured titanium alloyscitations
- 2019Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloycitations
- 2019Interrupted fatigue testing with periodic tomography to monitor porosity defects in wire + arc additive manufactured Ti-6Al-4Vcitations
- 2019An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4Vcitations
- 2018A comparison of fatigue crack growth performance of two aerospace grade aluminium alloys reinforced with bonded crack retarderscitations
- 2018Experimental and numerical analysis of flexural and impact behaviour of glass/pp sandwich panel for automotive structural applicationscitations
- 2018Mapping residual strain induced by cold working and by laser shock peening using neutron transmission spectroscopycitations
- 2017Fatigue performance of bonded crack retarders in the presence of cold worked holes and interference-fit fasteners
- 2017Fatigue performance of bonded crack retarders in the presence of cold worked holes and interference-fit fastenerscitations
- 2014Durability of bonded crack retarders for aerospace
Places of action
Organizations | Location | People |
---|
article
An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V
Abstract
Selective-laser-melting (SLM) is a powder-bed fusion additive-manufacturing process that has the potential to deliver three-dimensional complex parts with mechanical properties comparable or superior to parts produced via traditional manufacturing using cast and wrought alloys. Concerns for metallic parts built via SLM are the process-induced residual stresses, and anisotropic mechanical properties. This paper investigates the effect of residual stresses on the fatigue crack growth rate of SLM Ti6Al4V in as-built and stress-relieved conditions. Neutron diffraction and the contour method are employed to measure residual stresses in compact-tension samples. Neutron diffraction results are in good agreement with the contour method. It was found that tensile stresses are present at the notch root and the free edge areas, and compressive stress is seen in the middle of the sample. The tensile stresses in the as-built condition resulted in a higher fatigue crack growth rate. After stress relieving by heat treatment, the tensile residual stress diminished by around 90%, resulting in decreased crack growth rate. The build direction was seen to affect the crack growth rate, although the trend was different between the as-built and stress-relieved conditions.