People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rességuier, T. De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Material ejection from surface defects in laser shock-loaded metallic foilscitations
- 2020Dynamic behaviour and spall fracture of laser shock-loaded AlSi10Mg alloy obtained by selective laser meltingcitations
- 2019Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loadingcitations
- 2018On the shock-based determination of the adhesive strength at a substrate-coating interfacecitations
- 2018Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron lightcitations
- 2012Influence of elevated temperature on the wave propagation and spallation in laser shock-loaded ironcitations
- 2007Use of a macroscopic model for describing the effects of porosity on shock wave propagationcitations
Places of action
Organizations | Location | People |
---|
article
Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loading
Abstract
In this study, the dynamic behaviour of light aluminum alloy AlSi10Mg obtained by additive manufacturing was investigated under laser shock loading. Two types of AlSi10Mg specimens were obtained by Selective Laser Melting (SLM) with two sets of building parameters, leading to specific architecture and microstructure compared to classical manufacturing processes. Their dynamic response to laser driven shocks was investigated on the basis of time-resolved measurements of free surface velocity, transverse visualization of shock-induced fragmentation, and post-recovery observations by means of microscopy. The results reveal a significant influence of the building parameters and SLM-inherited defects on both yield strength and spall strength values, as well as a strong dependence of high rate fracture behaviour on building direction of the material, mainly governed by melt pools shape and dissymmetry, with a combination of "interpool" and "intrapool" fracture modes.