Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pomberger, S.

  • Google
  • 3
  • 10
  • 78

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Impact of microstructural properties on the crack threshold of aluminium castings7citations
  • 2021Fatigue strength assessment of additively manufactured metallic structures considering bulk and surface layer characteristics29citations
  • 2019A probabilistic Kitagawa-Takahashi diagram for fatigue strength assessment of cast aluminium alloys42citations

Places of action

Chart of shared publication
Leitner, Martin
3 / 66 shared
Aigner, R.
2 / 2 shared
Oberreiter, M.
1 / 1 shared
Stoschka, M.
2 / 5 shared
Schneller, W.
1 / 1 shared
Grün, F.
1 / 3 shared
Leuders, S.
1 / 15 shared
Pfeifer, T.
1 / 1 shared
Jantschner, O.
1 / 1 shared
Pusterhofer, S.
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Leitner, Martin
  • Aigner, R.
  • Oberreiter, M.
  • Stoschka, M.
  • Schneller, W.
  • Grün, F.
  • Leuders, S.
  • Pfeifer, T.
  • Jantschner, O.
  • Pusterhofer, S.
OrganizationsLocationPeople

article

A probabilistic Kitagawa-Takahashi diagram for fatigue strength assessment of cast aluminium alloys

  • Leitner, Martin
  • Pusterhofer, S.
  • Pomberger, S.
  • Aigner, R.
  • Stoschka, M.
Abstract

Aluminium cast components containing intrinsic flaws were investigated in terms of fatigue strength. Therefore, quasi-static, fracture mechanical and fatigue tests were conducted at specimens exhibiting varying microstructural characteristics. Subsequently, the specimens were metallographically and fractographically analysed to evaluate spatial extent of the fracture initiating defects as well as the statistical distribution of defect sizes. Furthermore, the near defect-free fatigue strength was investigated to evaluate the upper boundary in fatigue strength for the Kitagawa-Takahashi diagram. In addition, the fracture mechanical test results were statistically evaluated as probabilistic values. Further on, a probabilistic evaluation of the crack resistance curve-concept was set up, taking the statistically distributed long crack threshold into account. The fatigue tests were finally utilized as probabilistic, defect correlated, fatigue design approach. The experimental results revealed that the fracture elongation of HIPped material increases by an average of 146% and the fatigue strength elevates of about 35%. The evaluated parameters from extensive crack propagation tests propose a long crack threshold of approximately 4 MPa √ m and an intrinsic threshold of slightly beneath 1 MPa √ m. The probabilistic Chapetti and El Haddad approaches lead to a sound correspondence with the experimental test data. Therefore, the presented fatigue assessment scientifically supports the lightweight design process especially for utmost probabilities of survival.

Topics
  • aluminium
  • crack
  • strength
  • fatigue
  • aluminium alloy