People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jacques, Pascal, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Friction Melt Bonding: an innovative process applied to the joining of dissimilar materials in a lap-joint configuration
- 2023A map of single-phase high-entropy alloyscitations
- 2022Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of beta-metastable Ti-12 wt.% Mo alloycitations
- 2022Potential TRIP/TWIP coupled effects in equiatomic CrCoNi medium-entropy alloycitations
- 2022Optimisation of the Thermoelectric Properties of Fe2VAl Thin Films Obtained by Co-sputtering
- 2022Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti – 12 wt % Mo alloy
- 2021Unveiling the thermodynamic driving forces for high entropy alloys formation through big data ab initio analysiscitations
- 2021Diffusion Multiples as a Tool to Efficiently Explore the Composition Space of High Entropy Alloyscitations
- 2021Influence of 5 at.%Al-Additions on the FCC to BCC Phase Transformation in CrFeNi Concentrated Alloyscitations
- 2020High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloycitations
- 2019A multi-mechanism non-local porosity model for high-ductile materials; application to high entropy alloys
- 2019Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayerscitations
Places of action
Organizations | Location | People |
---|
article
Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers
Abstract
The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.