Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rakhymberdiyev, A. N.

  • Google
  • 1
  • 4
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Mechanical behaviour of Ti-Nb-Hf alloys15citations

Places of action

Chart of shared publication
Yang, R.
1 / 2 shared
Vorontsov, Vassili A.
1 / 28 shared
Dye, D.
1 / 58 shared
Rahman, K. M.
1 / 8 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Yang, R.
  • Vorontsov, Vassili A.
  • Dye, D.
  • Rahman, K. M.
OrganizationsLocationPeople

article

Mechanical behaviour of Ti-Nb-Hf alloys

  • Rakhymberdiyev, A. N.
  • Yang, R.
  • Vorontsov, Vassili A.
  • Dye, D.
  • Rahman, K. M.
Abstract

Ti-(24,26)Nb-(2,4)Hf at.% alloys were designed by assuming that hafnium has a similar effect to zirconium in the Ti-Nb-Zr system. Alloy specimens were produced using vacuum arc melting and subsequently hot-rolled. Uniaxial tensile testing was then performed both at ambient temperature and in liquid nitrogen at −196 °C. While the alloys showed no obvious superelastic behaviour, they exhibited pronounced strain hardening and could achieve high elongations before failure (&gt;30% engineering strain). Post-mortem examination revealed that the mechanism of strain hardening was extensive {332} and/or {211} deformation twinning. Twinning was found to be more prevalent in alloys with 2at.% Hf compared to those with 4at.%. The cryogenic temperature deformation also promoted deformation twinning when compared to ambient temperature results. As is the case with other metastable <i>β</i>-Ti alloys, maintaining control over the precipitation of <i>ω</i> phases was found to be crucial for attaining desirable mechanical behaviour. Further, microstructural engineering and alloying may be used to develop strong, lightweight alloys based on the Ti-Nb-Hf system with beneficial strain hardening characteristics for energy absorption and biomedical applications.

Topics
  • impedance spectroscopy
  • phase
  • zirconium
  • Nitrogen
  • precipitation
  • hafnium
  • vacuum arc melting